13 Bài tập Cách xét tính đồng biến, nghịch biến của hàm số (có lời giải)

50 người thi tuần này 4.6 105 lượt thi 13 câu hỏi 45 phút

Chia sẻ đề thi

hoặc tải đề

In đề / Tải về
Thi thử
Xét tính đồng biến, nghịch biến của hàm số y = f(x) = x2 trên khoảng (–∞; 0).

Hướng dẫn giải:

Xét hàm số y = x2 trên khoảng (–∞; 0).

Lấy x1, x2 tùy ý sao cho x1 < x2, ta có: f(x1) – f(x2) = x12 – x22 = (x1 – x2)(x1 + x2)

Do x1 < x2  nên x1 – x2 < 0 và do x1, x2 thuộc (–∞; 0) nên x1 + x2 < 0.

Từ đó suy ra: f(x1) – f(x2) > 0 hay f(x1) > f(x2)

Do đó, khi x1 < x2   thì f(x1) > f(x2)

Vậy hàm số nghịch biến (giảm) trên khoảng (–∞; 0).

Đề thi liên quan:

Danh sách câu hỏi:

Câu 3:

Cho hàm số​​ f(x) = 4 – 3x. Khẳng định nào sau đây đúng?

Xem đáp án

Câu 4:

Xét tính đồng biến, nghịch biến của hàm số​​ f(x) = 4x + 5​​ trên khoảng​​ (–∞; 2)​​ và trên khoảng​​ (2; +∞). Khẳng định nào sau đây đúng ?

Xem đáp án

Câu 5:

Xét sự​​ biến thiên của hàm số​​ f(x) = 3x​​ trên khoảng​​ (0; +∞). Khẳng định nào sau đây đúng ?

Xem đáp án

Câu 6:

Xét tính đồng biến, nghịch biến của hàm số y = –0,5x. Khẳng định nào sau đây là sai:

Xem đáp án

Câu 7:

Xét tính đồng biến, nghịch biến của hàm số y = –0,5x. Khẳng định nào sau đây là sai:

Xem đáp án

Câu 8:

Cho hàm số có đồ thị như hình dưới:

Media VietJack

Khẳng định nào dưới đây là đúng ?

Xem đáp án

Câu 9:

Cho hàm số có đồ thị như hình dưới:

Media VietJack

Khẳng định nào dưới đây là sai ?

Xem đáp án

Câu 10:

Cho hàm số có đồ thị như hình dưới:

Media VietJack

Khẳng định nào dưới đây là đúng ?

Xem đáp án

Câu 12:

Cho hàm số y = 2x2. Khẳng định nào sau đây là đúng ?

Xem đáp án

Câu 13:

Cho hàm số f(x)=4x+1. Khẳng định nào sau đây là đúng ?

Xem đáp án

4.6

21 Đánh giá

50%

40%

0%

0%

0%