10 Bài tập Số phần tử của tập hợp. Tập hợp rỗng (có lời giải)
22 người thi tuần này 4.6 322 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. 5;
B. 6;
C. 3;
D. 4.
Lời giải
Đáp án đúng là: B.
Ta có:
+ Các ước là số tự nhiên của 20 là: 1; 2; 4; 5; 10; 20.
+ Các ước là số tự nhiên của 40 là: 1; 2; 4; 5; 8; 10; 20; 40.
Do đó các ước chung là số tự nhiên của 20 và 40 là 1; 2; 4; 5; 10; 20.
⇒ E = {1; 2; 4; 5; 10; 20}.
Vì vậy tập hợp E gồm có 6 phần tử.
Vậy n(E) = 6.
Câu 2
A. 1;
B. 2;
C. 3;
D. 4.
Lời giải
Đáp án đúng là: A.
Ta có:
(x2 – 3)(4x2 – 10x + 6) = 0
⇔ .
Vì x ∈ ℤ nên ta chỉ nhận một giá trị là x = 1.
Do đó tập hợp X có 1 phần tử.
Vậy n(X) = 1.
Câu 3
A. A = {x ∈ ℤ | x2 – 9 = 0};
B. B = {x ∈ ℝ | x2 – 6 = 0};
C. C = {x ∈ ℝ | x2 + 1 = 0};
D. D = {x ∈ ℝ | x2 – 4x + 3 = 0}.
Lời giải
Đáp án đúng là: C.
A. Ta có:
x2 – 9 = 0 ⇔ x2 = 9 ⇔ .
Vì x ∈ ℤ nên hai nghiệm trên đều thỏa mãn.
Vậy A = {– 3; 3}.
B. Ta có:
x2 – 6 = 0 ⇔ x2 = 6 ⇔ .
Vì x ∈ ℝ nên hai nghiệm trên đều thỏa mãn.
Vậy B = { ; }.
C. Ta có:
Phương trình x2 + 1 = 0 vô nghiệm do x2 + 1 > 0 với mọi x ∈ ℝ.
Do đó, tập hợp C không có phần tử nào thỏa mãn.
Vậy C = ∅.
D. Ta có:
x2 – 4x + 3 = 0 ⇔ .
Vì x ∈ ℝ nên hai nghiệm trên đều thỏa mãn.
Vậy D = {1; 3}.
Vậy C là tập hợp rỗng.
Câu 4
A. A = {x ∈ ℝ | x2 + x + 3 = 0};
B. B = {x ∈ ℕ* | x2 + 6x + 5 = 0};
C. C = {x ∈ ℕ* | x(x2 – 5) = 0};
D. D = {x ∈ ℝ | x2 – 9x + 20 = 0}.
Lời giải
Đáp án đúng là: D.
A. Ta có:
Do x2 + x + 3 = x2 + 2 . x + + = .
Phương trình x2 + x + 3 = 0 vô nghiệm.
Do đó, tập hợp A không có phần tử nào thỏa mãn.
Vậy A = ∅.
B. Ta có:
x2 + 6x + 5 = 0 ⇔ .
Vì x ∈ ℕ* nên không có phần tử nào thỏa mãn tập hợp trên.
Vậy B = ∅.
C. Ta có:
x(x2 – 5) = 0 ⇔ .
Vì x ∈ ℕ* nên không có phần tử nào thỏa mãn tập hợp trên.
Vậy C = ∅.
D. Ta có:
x2 – 9x + 20 = 0 ⟺ .
Vì x ∈ ℝ nên hai nghiệm x = 4 và x = 5 đều thỏa mãn.
Do đó tập hợp D có hai phần tử.
Vậy D = {4; 5}.
Vậy chỉ có tập hợp D không phải là tập hợp rỗng.
Lời giải
Đáp án đúng là: B.
- Xét tập hợp A ta có:
2 < x – 1 < 4
⇔ 2 + 1 < x < 4 + 1
⇔ 3 < x < 5.
Vì x ∈ ℤ nên x = 4.
Vậy A = {4}.
- Xét tập hợp B ta có:
3 < 2x – 3 < 5
⇔ 3 + 3 < 2x < 5 + 3
⇔ 6 < 2x < 8
⇔ 3 < x < 4.
Vì x ∈ ℕ nên không có giá trị nào của x thỏa mãn.
Vậy B = ∅.
- Xét tập hợp C ta có:
Các số tự nhiên x bé hơn 5 là 0; 1; 2; 3; 4.
Vậy C = {0; 1; 2; 3; 4}.
Vậy trong 3 tập hợp trên có 1 tập rỗng.
Câu 6
A. a = – 4;
B. a = – 5;
C. a = – 6;
D. a = – 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. m = 7;
B. m = 5;
C. m = 9;
D. m = 8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. n(C) = 2;
B. n(C) = 3;
C. n(C) = 4;
D. n(C) = 5;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. n(D) = 5;
B. n(D) = 6;
C. n(D) = 7;
D. n(D) = 8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.