10 Bài tập Một số bài toán liên quan đến diện tích (có lời giải)
33 người thi tuần này 4.6 187 lượt thi 10 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Trong mặt phẳng tọa độ Oxy, đường thẳng Δ: 5x + 3y – 15 = 0 tạo với các trục tọa độ một tam giác có diện tích bằng bao nhiêu?
Trong mặt phẳng tọa độ Oxy, đường thẳng Δ: 5x + 3y – 15 = 0 tạo với các trục tọa độ một tam giác có diện tích bằng bao nhiêu?
Lời giải

Câu 2
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2; –1), B(1; 2) và C(2; –4). Diện tích tam giác ABC là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(2; –1), B(1; 2) và C(2; –4). Diện tích tam giác ABC là
Lời giải

Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Ta có: là vectơ pháp tuyến của đường thẳng AC.
Từ ta có
Phương trình đường thẳng AC là : x – 3 = 0.
Khi đó
Diện tích tam giác ABC là (đvdt).
Câu 4
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: mx – y – 4 = 0; d2: –mx – y – 4 = 0. Gọi S là tập hợp các giá trị nguyên dương của m để tam giác tạo thành bởi d1, d2 và trục hoành có diện tích lớn hơn 8. Số phần tử của tập hợp S là
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1: mx – y – 4 = 0; d2: –mx – y – 4 = 0. Gọi S là tập hợp các giá trị nguyên dương của m để tam giác tạo thành bởi d1, d2 và trục hoành có diện tích lớn hơn 8. Số phần tử của tập hợp S là
Lời giải

Câu 5
Trong mặt phẳng tọa độ Oxy, đường thẳng d đi qua điểm I(1; 3) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 6. Phương trình đường thẳng d nào sau đây không thỏa mãn điều kiện trên?
Trong mặt phẳng tọa độ Oxy, đường thẳng d đi qua điểm I(1; 3) và tạo với hai tia Ox, Oy một tam giác có diện tích bằng 6. Phương trình đường thẳng d nào sau đây không thỏa mãn điều kiện trên?
Lời giải


Câu 6
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; –3), B(0; 2), C(–2; 4). Đường thẳng Δ đi qua A và chia tam giác ABC thành hai phần có diện tích bằng nhau. Phương trình của đường thẳng Δ là
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1; –3), B(0; 2), C(–2; 4). Đường thẳng Δ đi qua A và chia tam giác ABC thành hai phần có diện tích bằng nhau. Phương trình của đường thẳng Δ là
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Gọi I là giao điểm của đường thẳng Δ và BC.
Gọi H là hình chiếu của A trên BC.
Theo đề bài ta có: SAIB = SAIC. Suy ra I là trung điểm của đoạn thẳng BC.
Với B(0; 2), C(–2; 4) ta có I(–1; 3). Khi đó suy ra .
Đường thẳng Δ đi qua A(1; –3) và nhận vectơ làm vectơ pháp tuyến nên có phương trình là 3(x – 1) + 1(y + 3) = 0 hay 3x + y = 0.
Câu 7
Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là
Trong mặt phẳng tọa độ Oxy, cho điểm M(2; 1). Đường thẳng d đi qua M, cắt các tia Ox, Oy lần lượt tại A và B (A, B khác O) sao cho tam giác OAB có diện tích nhỏ nhất. Phương trình đường thẳng d là
Lời giải

Câu 8
Trong mặt phẳng tọa độ Oxy, đường thẳng d: đi qua M(–1; 6) và tạo với tia Ox, Oy một tam giác có diện tích bằng 4. Giá trị S = a + 2b có thể bằng
Trong mặt phẳng tọa độ Oxy, đường thẳng d: đi qua M(–1; 6) và tạo với tia Ox, Oy một tam giác có diện tích bằng 4. Giá trị S = a + 2b có thể bằng
Lời giải

Câu 9
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua A(2; 1) có hệ số góc k nguyên dương. Phương trình đường thẳng d tạo với hai trục tọa độ một tam giác có diện tích bằng 0,5 là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d đi qua A(2; 1) có hệ số góc k nguyên dương. Phương trình đường thẳng d tạo với hai trục tọa độ một tam giác có diện tích bằng 0,5 là
Lời giải

Câu 10
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1; –2), đường cao CH: x – y + 1 = 0, phân giác trong BN: 2x + y + 5 = 0. Diện tích tam giác ABC bằng
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(1; –2), đường cao CH: x – y + 1 = 0, phân giác trong BN: 2x + y + 5 = 0. Diện tích tam giác ABC bằng
Lời giải


37 Đánh giá
50%
40%
0%
0%
0%