14 Bài tập Chứng minh dạng tam giác (vuông, nhọn, tù) (có lời giải)

25 người thi tuần này 4.6 198 lượt thi 14 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho tam giác ABC thỏa mãn sin C = 2sin Bcos A. Chứng minh rằng tam giác ABC cân.

Lời giải

Hướng dẫn giải:

Áp dụng hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Theo định lí sin ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\)\( \Rightarrow \sin B = \frac{b}{{2R}};\,\,\sin C = \frac{c}{{2R}}\).

Từ đó ta có: sinC = 2sinBcosA

\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

\( \Leftrightarrow {c^2} = {b^2} + {c^2} - {a^2} \Rightarrow a = b\).

Suy ra tam giác ABC cân tại đỉnh C.

Câu 2

Cho tam giác ABC. Chứng minh các khẳng định sau:

Góc A nhọn khi và chỉ khi a2 < b2 + c2;

Lời giải

Hướng dẫn giải:

Theo định lí côsin trong tam giác, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Từ a2 < b2 + c2 b2 + c2 – a2 > 0 cos A > 0 Góc A là góc nhọn.

Câu 3

Cho tam giác ABC. Chứng minh các khẳng định sau:

Góc A vuông khi và chỉ khi a2 = b2 + c2;

Lời giải

Hướng dẫn giải:

Theo định lí côsin trong tam giác, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Từ a2 = b2 + c2 b2 + c2 – a2 = 0 cos A = 0 Góc A là góc vuông.

Câu 4

Cho tam giác ABC. Chứng minh các khẳng định sau:

Góc A tù khi và chỉ khi a2 > b2 + c2.

Lời giải

Hướng dẫn giải:

Theo định lí côsin trong tam giác, ta có:

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Từ a2 > b2 + c2 b2 + c2 – a2 < 0 cos A < 0 Góc A là góc tù.

Câu 5

Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

\(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = \frac{{{4^2} + {6^2} - {8^2}}}{{2.4.6}} = \frac{{ - 1}}{4} < 0\)

Do đó góc C là góc tù.

Vậy tam giác ABC là tam giác tù.

Câu 6

Cho tam giác có: a = 8, b = 11, \(\widehat C = 30^\circ \). Xét dạng của tam giác ABC.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Ta có: \({c^2} = {a^2} + {b^2} - 2ab.\cos C\)

\({c^2} = {8^2} + {11^2} - 2.8.11.\cos 30^\circ = 185 - 88\sqrt 3 \)\( \Rightarrow c \approx 5,71\).

Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{11}^2} + {{5,71}^2} - {8^2}}}{{2.11.5,71}} \approx 0,71\).

\( \Rightarrow \widehat A \approx 44,5^\circ \).

Do đó: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 105,5^\circ \).

Vậy tam giác ABC là tam giác tù.

Câu 7

Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Cách 1: Dễ thấy \[{c^2} = {a^2} + {b^2}\left( {{{15}^2} = {9^2} + {{12}^2}} \right)\]

Do đó theo định lý Pythagore đảo, tam giác ABC vuông tại C.

Cách 2: Theo định lý côsin ta có: \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} = 0\).

Do đó: \(\widehat C = 90^\circ \).

Vậy tam giác ABC vuông tại C.

Câu 8

Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Ta có: \({b^2} = {a^2} + {c^2} - 2ac.\cos B\)

\({b^2} = {10^2} + {\left( {5\sqrt 3 } \right)^2} - 2.10.5\sqrt 3 .\cos 30^\circ = 25\)

b = 5.

Nhận thấy \({5^2} + {\left( {5\sqrt 3 } \right)^2} = 100 = {10^2}\) hay b2 + c2 = a2.

Theo định lý Pythagore đảo suy ra tam giác ABC vuông tại A.

Câu 9

Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: A.

Theo hệ quả của định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).

Do đó:

Nếu b2 + c2 – a2 > 0  thì cos A > 0. Do đó góc A là góc nhọn.

Nếu b2 + c2 – a2 < 0  thì cos A < 0. Do đó góc A là góc tù.

Câu 10

Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}} = \frac{{12}}{{8\sqrt 3 }} = \frac{{\sqrt 3 }}{2}\).

Suy ra: \(\widehat A = 60^\circ \) hoặc \(\widehat A = 180^\circ - 60^\circ = 120^\circ \) \(\widehat B = 60^\circ \) nên \(\widehat A = \widehat B = \widehat C = 60^\circ \) (loại trường hợp \(\widehat A = 120^\circ \) do không thỏa mãn định lí tổng 3 góc trong tam giác).

Vậy tam giác ABC là tam giác đều.

Câu 11

Tam giác ABC thỏa mãn \(\frac{{\sin B}}{{\sin A}} = 2.\cos C\). Khi đó:

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = 2R\)\( \Rightarrow \frac{{\sin B}}{{\sin A}} = \frac{b}{a}\).

Lại có: \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\) (hệ quả định lí côsin).

Để \(\frac{{\sin B}}{{\sin A}} = 2.\cos C\) \( \Leftrightarrow \frac{b}{a} = 2.\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

\( \Leftrightarrow {b^2} = {a^2} + {b^2} - {c^2} \Leftrightarrow {a^2} - {c^2} = 0 \Leftrightarrow a = c\).

Do đó tam giác ABC cân.

Câu 12

Cho tam giác ABC thỏa mãn \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\). Xác định dạng của tam giác ABC.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Áp dụng hệ quả định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\); \(\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

Ta có: \(\frac{a}{{\cos A}} = \frac{{2abc}}{{{b^2} + {c^2} - {a^2}}}\); \(\frac{b}{{\cos B}} = \frac{{2abc}}{{{a^2} + {c^2} - {b^2}}}\)

Để \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\)\( \Leftrightarrow {b^2} + {c^2} - {a^2} = {a^2} + {c^2} - {b^2} \Leftrightarrow a = b\)

Do đó tam giác ABC là tam giác cân.

Câu 13

Xác định dạng của tam giác ABC biết S = p(p – a) với S là diện tích tam giác ABC và p là nửa chu vi tam giác.

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Nửa chu vi tam giác p = \(\frac{1}{2}\)(a + b + c).

Ta có: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \).

Lại có: S = p(p – a)

Suy ra: p(p – a) = \(\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)

\( \Leftrightarrow \sqrt {p\left( {p - a} \right)} = \sqrt {\left( {p - b} \right)\left( {p - c} \right)} \)

\( \Leftrightarrow {p^2} - pa = {p^2} - pb - pc + bc\)

\( \Leftrightarrow p\left( {b + c - a} \right) - bc = 0\)

\( \Leftrightarrow \frac{1}{2}\left( {b + c + a} \right)\left( {b + c - a} \right) - bc = 0\)

\( \Leftrightarrow \frac{1}{2}\left[ {{{\left( {b + c} \right)}^2} - {a^2}} \right] - bc = 0\)

\( \Leftrightarrow \frac{1}{2}\left( {{b^2} + 2bc + {c^2} - {a^2}} \right) - bc = 0\)

\( \Leftrightarrow \frac{1}{2}{b^2} + \frac{1}{2}{c^2} - \frac{1}{2}{a^2} + \frac{1}{2}.2bc - bc = 0\)

\( \Leftrightarrow \frac{1}{2}\left( {{b^2} + {c^2} - {a^2}} \right) = 0\)

\( \Leftrightarrow {a^2} = {b^2} + {c^2}\).

Do đó tam giác ABC vuông tại A.

Câu 14

Cho a2, b2, c2 là độ dài các cạnh của một tam giác nào đó và a, b, c là độ dài các cạnh của tam giác ABC. Khi đó, khẳng định nào sau đây đúng?

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Vì a, b, c là độ dài các cạnh của tam giác ABC nên a, b, c > 0 \( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{ab > 0}\\{ac > 0}\\{bc > 0}\end{array}} \right.\) (1)

a2, b2, c2 là độ dài các cạnh của một tam giác nên theo bất đẳng thức tam giác, ta có: \(\left\{ {\begin{array}{*{20}{c}}{{a^2} + {b^2} - {c^2} > 0}\\{{b^2} + {c^2} - {a^2} > 0}\\{{a^2} + {c^2} - {b^2} > 0}\end{array}} \right.\) (2)

Áp dụng định lý côsin trong tam giác ABC ta có:

\(\left\{ {\begin{array}{*{20}{c}}{{a^2} = {b^2} + {c^2} - 2bc.\cos A}\\{{b^2} = {a^2} + {c^2} - 2ac.\cos B}\\{{c^2} = {a^2} + {b^2} - 2ab.\cos C}\end{array}} \right.\)\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}\\{\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}\\{\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}\end{array}} \right.\)(3)

Từ (1), (2), (3) suy ra cos A > 0 (vì bc > 0; b2 + c2 – a2 > 0)

cos B > 0 (vì ac > 0; a2 + c2 – b2 > 0); cos C > 0 (vì ab > 0; a2 + b2 – c2 > 0).

Vì cos A > 0; cos B > 0; cos C > 0 \( \Rightarrow \widehat A,\,\,\,\widehat B,\,\,\,\widehat C\) là ba góc nhọn.

Vậy tam giác ABC là tam giác nhọn.

4.6

40 Đánh giá

50%

40%

0%

0%

0%