Đề kiểm tra Toán 12 Kết nối tri thức Chương 5 có đáp án - Đề 1
22 người thi tuần này 4.6 38 lượt thi 11 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức từ đề thi Đại học cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
191 câu Bài tập số phức mức độ cơ bản, nâng cao cực hay có lời giải chi tiết(P1)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn đáp án A
Ta có: \(1 + 1 - 3 + 1 = 0 \Rightarrow \) điểm \(A\left( {1;1;3} \right) \in \left( P \right).\)
Câu 2
\(M\left( {3;4; - 5} \right)\).
\(N\left( {2; - 5;3} \right)\).
\(P\left( { - 3; - 4;5} \right)\).
\(Q\left( {2;5; - 3} \right)\).
Lời giải
Chọn đáp án A
Thay tọa độ của điểm \(M\left( {3;4; - 5} \right)\) vào phương trình đường thẳng \(d\) ta có \(\frac{{3 - 3}}{2} = \frac{{4 - 4}}{{ - 5}} = \frac{{ - 5 + 5}}{3}.\)
Do đó \(M \in d\).
Câu 3
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 8\).
\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
\({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 64\).
Lời giải
Chọn đáp án B
Vì mặt cầu \(\left( S \right)\)có tâm \(A\left( {2;1;0} \right)\), đi qua điểm \(B\left( {0;1;2} \right)\) nên mặt cầu\(\left( S \right)\) có tâm\(A\left( {2;1;0} \right)\) và có bán kính \(R = AB\).
Ta có: \(\overrightarrow {AB} \left( { - 2;0;2} \right)\). Suy ra \(R = \left| {\overrightarrow {AB} } \right| = 2\sqrt 2 \).
Vậy \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
Câu 4
\[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
\[\overrightarrow u = \left( { - 2;3;2} \right)\].
\[\overrightarrow u = \left( {2; - 3; - 2} \right)\].
\[\overrightarrow u = \left( { - 2; - 3; - 2} \right)\].
Lời giải
Chọn đáp án A
Từ phương trình \[\frac{{x + 1}}{{ - 2}} = \frac{{2 - y}}{3} = \frac{z}{2} \Leftrightarrow \frac{{x + 1}}{{ - 2}} = \frac{{y - 2}}{{ - 3}} = \frac{z}{2}\], khi đó một vectơ chỉ phương của đường thẳng \[\left( d \right)\] là \[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
Câu 5
\[4x + 3y + 7z - 11 = 0\].
\[4x + 3y + 7z + 11 = 0\].
\[4x + 3y - 7z + 11 = 0\].
\[4x + 3y - 7z - 11 = 0\].
Lời giải
Chọn đáp án C
Vì mặt phẳng vuông góc với đường thẳng d nên \[\overrightarrow n = \overrightarrow u = \left( {4;3; - 7} \right)\].
Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {4;3; - 7} \right)\].
\[4\left( {x - 1} \right) + 3\left( {y - 2} \right) - 7\left( {z - 3} \right) = 0\]\[ \Leftrightarrow 4x + 3y - 7z + 11 = 0\].
Câu 6
\(\frac{{x + 1}}{1} = \frac{{y + 3}}{{ - 5}} = \frac{{z - 2}}{1}\).
\(\frac{{x - 1}}{1} = \frac{{y - 3}}{3} = \frac{{z + 2}}{{ - 2}}\).
\(\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 5}} = \frac{{z + 1}}{1}\).
\(\frac{{x + 2}}{1} = \frac{{y - 2}}{{ - 5}} = \frac{{z - 1}}{1}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Một chiếc bàn gấp gọn đã được thiết lập hệ tọa độ \[Oxyz\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/blobid3-1760541266.png)