Bài tập ôn tập Toán 11 Chân trời sáng tạo Chương 3 có đáp án
54 người thi tuần này 4.6 127 lượt thi 55 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Ta có \(\lim \frac{1}{{{n^4}}} = 0\). Chọn C.
Câu 2
Hàm số liên tục trên \(\left[ { - 2;2} \right]\).
Hàm số liên tục trên \(\left( {0;4} \right)\).
Hàm số liên tục tại \[x = 2\].
Hàm số liên tục tại \[x = 1\].
Lời giải
Hàm số \(f\left( x \right) = \frac{{2x - 1}}{{x - 2}}\) liên tục trên \(\mathbb{R}\backslash \left\{ 2 \right\}\).
Do đó hàm số liên tục tại \(x = 1\). Chọn D.
Câu 3
\(y = \sqrt x \).
\(y = \tan x\).
\(y = 3{x^3} - 4{x^2} + 1\).
\(y = \cot x\).
Lời giải
Hàm số \(y = 3{x^3} - 4{x^2} + 1\) liên tục trên \(\mathbb{R}\). Chọn C.
Câu 4
\(\frac{1}{2}\).
0.
\(\frac{1}{5}\).
\( - \frac{3}{2}\).
Lời giải
Ta có \(\lim \frac{{\sqrt n }}{{2{n^2} + 3}}\)\( = \lim \frac{{\sqrt {\frac{1}{{{n^3}}}} }}{{2 + \frac{3}{{{n^2}}}}} = 0\). Chọn B.
Câu 5
\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{{x^4}}} = + \infty \).
\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\sqrt x }} = + \infty \).
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \).
\(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = - \infty \).
Lời giải
Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}} = + \infty \) vì \(\mathop {\lim }\limits_{x \to {2^ + }} \left( {x - 2} \right) = 0\) và \(x \to {2^ + }\) thì \(x - 2 > 0\). Chọn D.
Câu 6
\(\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) = f\left( c \right)\) và \(\mathop {\lim }\limits_{x \to {d^ + }} f\left( x \right) = f\left( d \right)\).
\(\mathop {\lim }\limits_{x \to {c^ + }} f\left( x \right) = f\left( c \right)\) và \(\mathop {\lim }\limits_{x \to {d^ - }} f\left( x \right) = f\left( d \right)\).
\(\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) = f\left( c \right)\) và \(\mathop {\lim }\limits_{x \to {d^ - }} f\left( x \right) = f\left( d \right)\).
\(\mathop {\lim }\limits_{x \to {c^ - }} f\left( x \right) = f\left( c \right)\) và \(\mathop {\lim }\limits_{x \to {d^ + }} f\left( x \right) = f\left( d \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
\(\left( { - \infty ; - 2} \right)\) và \(\left( { - 2; + \infty } \right)\).
\(\left( { - \infty ;2} \right)\).
\(\left[ { - 2; + \infty } \right)\).
\(\mathbb{R}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
\({u_n} = {\pi ^n}\).
\({u_n} = {\left( {\frac{2}{5}} \right)^n}\).
\({u_n} = {\left( {\frac{{12}}{5}} \right)^n}\).
\({u_n} = \frac{{{n^5}}}{{2n + 3}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
\({a^b}\).
\(a - b\).
\(a + b\).
\(a \cdot b\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
\(0\).
\( - \infty \).
\( + \infty \).
\(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
\(0\).
\(6\).
\(4\).
\(1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
\( - 1\).
\(1\).
\( - \infty \).
\(0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\).
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\).
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to a} f\left( x \right) = f\left( a \right)\).
Hàm số \(y = f\left( x \right)\) liên tục tại \(x = a\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
\(3\).
\(1\).
\(8\).
\( + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
\( - \sqrt 3 \).
\( - 3\).
\(\sqrt 3 \).
\( + \infty \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 17
\(1\).
\(\frac{1}{6}\).
\(0\).
\( - \frac{1}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 18
\(f\left( x \right) = \sqrt {x - 1} \).
\(f\left( x \right) = \cot x\).
\(f\left( x \right) = \sin x\).
\(f\left( x \right) = \tan x\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 19
\(0\).
\( - \infty \).
\( + \infty \).
\(2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 21
\(S = 2\).
\(S = \frac{1}{2}\).
\(S = 3\).
\(S = \frac{1}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 22
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\).
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 1\).
\(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 24
\(\frac{9}{5}\).
\(\frac{6}{5}\).
\( - \frac{6}{5}\).
\( - \frac{9}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 25
\(0\).
\(\frac{{ - 2}}{{\sqrt 5 - 1}}\).
\(\frac{2}{{\sqrt 5 }}\).
\(\frac{2}{{\sqrt 5 + 1}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 26
\(\frac{7}{3}\).
\(\frac{3}{7}\).
\(21\).
\(10\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 27
\( - \infty \).
\(0\).
\( + \infty \).
\(a\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 28
\( - \infty \).
\(1\).
\(0\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 29
\(3\).
\(7\).
\(1\).
\( - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 30
\({x^2} - 8x + 15 = 0\).
\({x^2} - 11x + 10 = 0\).
\({x^2} + 9x - 10 = 0\).
\({x^2} - 5x + 6 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 32
Tập xác định của hàm số \(f\left( x \right)\) là \(D = \mathbb{R}\).
\(f\left( 0 \right) = 2m + \frac{1}{4}\).
\(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = 1\).
Hàm số \(f\left( x \right)\) liên tục tại \(x = 0\) khi \(m = \frac{1}{4}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 33
Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 2\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \frac{1}{2}\).
Hàm số \(y = f\left( x \right) + \sin x\) không liên tục tại điểm \({x_0} = 0\).
Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 34
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{x - 3}}{{f\left( x \right)}} = \infty \).
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{{x - 3}}\) tồn tại hữu hạn.
\[\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{{{{\left( {x - 3} \right)}^2}}} = - \infty \].
Giới hạn \(\mathop {\lim }\limits_{x \to 3} \frac{{{{\left( {x - 3} \right)}^2}}}{{f\left( x \right)}} = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 35
Hàm số mô tả số tiền phí theo thời gian trông giữ là \(f\left( x \right) = \left\{ \begin{array}{l}30\;\;\;\;\;\;\;\;\;\;{\rm{khi}}\;0 < x \le 1\\10 + 20x\;\;{\rm{khi}}\;x > 1\end{array} \right.\).
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = 30\).
Một người gửi xe ô tô trong 2,5 giờ thì số tiền phải trả là 55 nghìn đồng.
Hàm số \(f\left( x \right)\) liên tục trên khoảng \(\left( {0; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 36
\(\lim {u_n} = 7\).
\(\lim \left( {{v_n} - \frac{1}{4}} \right) = 0\).
\(\lim \left( {2{u_n} - 4{v_n}} \right) = 0\).
\(\lim \frac{{{u_n}}}{{2{v_n}}} = \frac{1}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 37
\(f\left( x \right) = x,\forall x \in \mathbb{R}\).
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 2\).
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 3\).
Không tồn tại giới hạn của hàm số khi \(x \to 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 39
\(f\left( 2 \right) = 0\).
\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 4\).
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = - 4\).
\(a = - 1010\) thì tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 40
\(\lim {v_n} = - 2\).
Với \(a = 1\) thì \(\lim {u_n} = 2\).
Biết \(\lim {u_n} = 1\) và \(\lim {v_n} = b\) thì \(a \cdot b = 6\).
Không có giá trị nào của \(a\) để dãy số \(\left( {{u_n}} \right)\) có giới hạn vô cực.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
