Đề kiểm tra Toán 11 Chân trời sáng tạo Chương 1 có đáp án - Đề 2
22 người thi tuần này 4.6 109 lượt thi 11 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 10
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 8
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 7
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 6
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 5
Bộ 10 đề thi Cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 4
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 2
Bộ 10 đề thi cuối kì 2 Toán 11 Chân trời sáng tạo có đáp án - Đề 1
Danh sách câu hỏi:
Lời giải
Vì \(x \in \left[ {\pi ;2\pi } \right]\) nên \(\sin x < 0\) mà \(\sin x = \frac{1}{5}\) nên phương trình vô nghiệm trên đoạn \(\left[ {\pi ;2\pi } \right]\). Chọn B.
Câu 2
Rút gọn biểu thức \(M = \frac{{\sin 2x}}{{\sin x}} - \frac{{\cos 2x}}{{\cos x}}\) ta được kết quả là
\(M = \frac{1}{{\cos x}}\).
\(M = \frac{{\cos 3x}}{{\sin x.\cos x}}\).
\(M = \frac{1}{{\sin x}}\).
\(M = 1\).
Lời giải
\(M = \frac{{\sin 2x}}{{\sin x}} - \frac{{\cos 2x}}{{\cos x}}\)\( = \frac{{\sin 2x\cos x - \cos 2x\sin x}}{{\sin x\cos x}}\)\( = \frac{{\sin \left( {2x - x} \right)}}{{\sin x\cos x}}\)\( = \frac{1}{{\cos x}}\). Chọn A.
Câu 3
\(\left[ { - 1;1} \right]\).
\(\left[ { - 2;2} \right]\).
\(\left[ {0;1} \right]\).
\(\mathbb{R}\).
Lời giải
Tập xác định của hàm số \(y = \cos 2x\) là \(\mathbb{R}\). Chọn D.
Câu 4
\(\left( {0;1} \right)\).
\(\left( {\frac{\pi }{2};0} \right)\).
\(\left( {0;2} \right)\).
\(\left( {\pi ;0} \right)\).
Lời giải
Thay tọa độ điểm \(\left( {0;1} \right)\) vào hàm số ta thấy thỏa mãn.
Do đó dồ thị hàm số \(f\left( x \right) = \sin x + 1\) đi qua điểm \(\left( {0;1} \right)\). Chọn A.
Câu 5
\(\left( { - \frac{{3\pi }}{4}; - \frac{\pi }{4}} \right)\).
\(\left( {\frac{\pi }{4};\frac{\pi }{2}} \right)\).
\(\left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\).
\(\left( {0;1} \right)\).
Lời giải
Hàm số \(y = \sin 2x\) đồng biến trên khoảng \(\left( { - \frac{\pi }{4};\frac{\pi }{4}} \right)\). Chọn C.
Câu 6
\(S = \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\).
\(S = \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
\(S = \left\{ { - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\).
\(S = \left\{ { - \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Khi \(x = 0\) thì \(A = 1\).
\(A = 1 + \sin 2x\).
\(A \in \left[ {0;2} \right]\).
Nếu \(\cos 2x = - 1\) thì \[A = - 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
\(g\left( x \right) = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right),\forall x \in \mathbb{R}\).
Với \(\forall x \in \left( {\pi ;\frac{{3\pi }}{2}} \right)\) thì \(g\left( x \right) < 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

