12 bài tập Bất phương trình bậc nhất biến đổi đặc biệt có lời giải

44 người thi tuần này 4.6 183 lượt thi 12 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Đáp án đúng là: B

Ta có: \(\frac{{x + 1}}{{35}} + \frac{{x + 3}}{{33}} \ge \frac{{x + 5}}{{31}} + \frac{{x + 7}}{{29}}\)

Suy ra \(\frac{{x + 1}}{{35}} + 1 + \frac{{x + 3}}{{33}} + 1 \ge \frac{{x + 5}}{{31}} + 1 + \frac{{x + 7}}{{29}} + 1\)

\(\frac{{x + 36}}{{35}} + \frac{{x + 36}}{{33}} \ge \frac{{x + 36}}{{31}} + \frac{{x + 36}}{{29}}\)

\(\frac{{x + 36}}{{35}} + \frac{{x + 36}}{{33}} - \frac{{x + 36}}{{31}} - \frac{{x + 36}}{{29}} \ge 0\)

(x + 36) \(\left( {\frac{1}{{35}} + \frac{1}{{33}} - \frac{1}{{31}} - \frac{1}{{29}}} \right)\) ≥ 0.

Nhận thấy \(\frac{1}{{35}} + \frac{1}{{33}} - \frac{1}{{31}} - \frac{1}{{29}}\) < 0.

Nên x + 36 ≤ 0 hay x ≤ −36.

Suy ra nghiệm của bất phương trình là x ≤ −36.

Vậy a = −36.

Lời giải

Đáp án đúng là: A

Ta có: \(\frac{{x + 6}}{{1999}} + \frac{{x + 8}}{{1997}} \ge \frac{{x + 10}}{{1995}} + \frac{{x + 12}}{{1993}}\)

Suy ra \(\frac{{x + 6}}{{1999}} + 1 + \frac{{x + 8}}{{1997}} + 1 \ge \frac{{x + 10}}{{1995}} + 1 + \frac{{x + 12}}{{1993}} + 1\)

\(\frac{{x + 2005}}{{1999}} + \frac{{x + 2005}}{{1997}} \ge \frac{{x + 2005}}{{1995}} + \frac{{x + 2005}}{{1993}}\)

\(\frac{{x + 2005}}{{1999}} + \frac{{x + 2005}}{{1997}} - \frac{{x + 2005}}{{1995}} - \frac{{x + 2005}}{{1993}} \ge 0\)

(x + 2005) \(\left( {\frac{1}{{1999}} + \frac{1}{{1997}} - \frac{1}{{1995}} - \frac{1}{{1993}}} \right)\) ≥ 0

Nhận thấy \(\frac{1}{{1999}} + \frac{1}{{1997}} - \frac{1}{{1995}} - \frac{1}{{1993}}\) < 0 nên để thỏa mãn bất phương trình thì x + 2005 ≤ 0 hay x ≤ −2005.

Do đó, nghiệm nguyên của bất phương trình là x ≤ −2005.

Vậy nghiệm nguyên lớn nhất của bất phương trình là −2005.

Lời giải

Đáp án đúng là: A

Ta có: \(\frac{{x - 10}}{{1994}} + \frac{{x - 8}}{{1996}} + \frac{{x - 6}}{{1998}} > \frac{{x - 1998}}{6} + \frac{{x - 1996}}{8} + \frac{{x - 1994}}{{10}}\)

Có \(\frac{{x - 10}}{{1994}} - 1 + \frac{{x - 8}}{{1996}} - 1 + \frac{{x - 6}}{{1998}} - 1 > \frac{{x - 1998}}{6} - 1 + \frac{{x - 1996}}{8} - 1 + \frac{{x - 1994}}{{10}} - 1\)

\(\frac{{x - 2004}}{{1994}} + \frac{{x - 2004}}{{1996}} + \frac{{x - 2004}}{{1998}} > \frac{{x - 2004}}{6} + \frac{{x - 2004}}{8} + \frac{{x - 2004}}{{10}}\)

\(\frac{{x - 2004}}{{1994}} + \frac{{x - 2004}}{{1996}} + \frac{{x - 2004}}{{1998}} - \frac{{x - 2004}}{6} - \frac{{x - 2004}}{8} - \frac{{x - 2004}}{{10}} > 0\)

(x – 2004)\(\left( {\frac{1}{{1994}} + \frac{1}{{1996}} + \frac{1}{{1998}} - \frac{1}{6} - \frac{1}{8} - \frac{1}{{10}}} \right) > 0\)

Nhận thấy \(\frac{1}{{1994}} + \frac{1}{{1996}} + \frac{1}{{1998}} - \frac{1}{6} - \frac{1}{8} - \frac{1}{{10}}\) < 0 nên để thỏa mãn bất phương trình thì x – 2004 < 0 hay x < 2004.

Do đó, nghiệm của bất phương trình là x < 2004.

Vậy a = 2004.

Do đó, giá trị biểu thức T = a – 902 = 2004 – 904 = 1100.

Lời giải

Đáp án đúng là: A

Ta có: \(\frac{{x - 1009}}{{1001}} + \frac{{x - 4}}{{1003}} + \frac{{x + 2010}}{{1005}} \ge 7\)

\(\frac{{x - 1009}}{{1001}} - 1 + \frac{{x - 4}}{{1003}} - 2 + \frac{{x + 2010}}{{1005}} - 4 \ge 7 - 1 - 2 - 4\)

\(\frac{{x - 1009 - 1001}}{{1001}} + \frac{{x - 4 - 2.1003}}{{1003}} + \frac{{x + 2010 - 4.1005}}{{1005}} \ge 0\)

\(\frac{{x - 2010}}{{1001}} + \frac{{x - 2010}}{{1003}} + \frac{{x - 2010}}{{1005}} \ge 0\)

(x – 2010) \(\left( {\frac{1}{{1001}} + \frac{1}{{1003}} + \frac{1}{{1005}}} \right)\) ≥ 0

Nhận thấy \(\frac{1}{{1001}} + \frac{1}{{1003}} + \frac{1}{{1005}}\) > 0 nên để thỏa mãn bất phương trình thì

x – 2010 ≥ 0 hay x ≥ 2010.

Do đó, nghiệm của bất phương trình là x ≥ 2010.

Vậy nghiệm nguyên nhỏ nhất của bất phương trình là 2010.

Lời giải

Đáp án đúng là: B

Ta có: \(\frac{{x - 85}}{{15}} + \frac{{x - 74}}{{13}} + \frac{{x - 67}}{{11}} \le 6\)

Suy ra \(\frac{{x - 85}}{{15}} - 1 + \frac{{x - 74}}{{13}} - 2 + \frac{{x - 67}}{{11}} - 2 \le 6 - 1 - 2 - 3\)

\(\frac{{x - 100}}{{15}} + \frac{{x - 100}}{{13}} + \frac{{x - 100}}{{11}} \le 0\)

(x – 100)\(\left( {\frac{1}{{15}} + \frac{1}{{13}} + \frac{1}{{11}}} \right) \le 0\)

Nhận thấy \(\frac{1}{{15}} + \frac{1}{{13}} + \frac{1}{{11}}\) > 0 nên để thỏa mãn yêu cầu bài toán thì x – 100 ≤ 0 hay x ≤ 100.

Do đó, nghiệm của bất phương trình là x ≤ 100.

Suy ra a = 100 và có \(\sqrt {100} = 10\).

Vậy căn bậc hai số học của a là 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

37 Đánh giá

50%

40%

0%

0%

0%