15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài tập cuối chương I có đáp án

73 người thi tuần này 4.6 356 lượt thi 15 câu hỏi 60 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

I. Nhân biết

Trong các hệ thức sau, hệ thức nào không phải là phương trình bậc nhất hai ẩn? 

Lời giải

Đáp án đúng là: C

Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng: \[ax + by = c,\] trong đó \[a,\,\,b,\,\,c\] là những số cho trước, \[a \ne 0\] hoặc \[b \ne 0.\]

Ta thấy hệ thức ở phương án C có cả hai số \[a,{\rm{ }}b\] đều bằng 0.

Do đó hệ thức ở phương án C không phải là phương trình bậc nhất hai ẩn.

Câu 2

Hệ số \[a,b\] và \[c\] tương ứng của phương trình bậc nhất hai ẩn \[ - 7x - 12 = 0\] là 

Lời giải

Đáp án đúng là: A

Phương trình bậc nhất hai ẩn \[x,y\] là hệ thức dạng \[ax + by = c\] với \[a \ne 0\] hoặc \[b \ne 0.\]

Ta viết phương trình \[ - 7x - 12 = 0\] thành \( - 7x + 0y = 12\).

Do đó, ta có \[a = - 7,\,\,b = 0,\,\,c = 12.\]

Vậy ta chọn phương án A.

Câu 3

Cặp số nào sau đây là nghiệm của phương trình \[3x - 2y + 1 = 0?\] 

Lời giải

Đáp án đúng là: D

Thay \[x = - 1,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:

\[3 \cdot \left( { - 1} \right) - 2 \cdot 1 + 1 = - 4 \ne 0.\]

Do đó cặp số \[\left( { - 1;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]

Thay \[x = 5,y = 3\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:

\[3 \cdot 5 - 2 \cdot 3 + 1 = 10 \ne 0.\]

Do đó cặp số \[\left( {5;3} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]

Thay \[x = 0,y = 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:

\[3 \cdot 0 - 2 \cdot 1 + 1 = - 1 \ne 0.\]

Do đó cặp số \[\left( {0;1} \right)\] không là nghiệm của phương trình \[3x - 2y + 1 = 0.\]

Thay \[x = - 1,y = - 1\] vào phương trình \[3x - 2y + 1 = 0,\] ta được:

\[3 \cdot \left( { - 1} \right) - 2 \cdot \left( { - 1} \right) + 1 = 0\] (đúng).

Do đó cặp số \[\left( { - 1; - 1} \right)\] là nghiệm của phương trình \[3x - 2y + 1 = 0.\]

Vậy ta chọn phương án D.

Câu 4

Cho hệ phương trình \[\left\{ \begin{array}{l}2x + 9y = 10\\5y - 3x = - 6\end{array} \right.,\] hệ số \[a,b,c\] và \[a',b',c'\] của hệ phương trình theo dạng hệ hai phương trình bậc nhất một ẩn là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cặp số \[\left( {1; - 5} \right)\] là nghiệm của hệ phương trình nào trong các hệ phương trình sau đây? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

II. Thông hiểu

Mỗi nghiệm của phương trình \[7x + 0y = 4\] được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau?

Mỗi nghiệm của phương trình 7x + 0y = 4 được biểu diễn bởi một điểm nằm trên đường thẳng có đồ thị là hình vẽ nào trong các hình vẽ sau? (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Điểm \[M\left( {1;3} \right)\] không thuộc đường thẳng nào sau đây? 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Cho hệ phương trình \[\left\{ \begin{array}{l}x - 7y = m\\ - mx + 2y = 9\end{array} \right..\] Khi \[m = 1\] thì hệ phương trình đã cho có nghiệm là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 11

Cho hệ phương trình \[\left\{ \begin{array}{l}\left( {x - 1} \right)\left( {y + 1} \right) = xy + 4\\\left( {x + 2} \right)\left( {y - 1} \right) = xy - 10\end{array} \right..\] Nghiệm của hệ phương trình trên là 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

71 Đánh giá

50%

40%

0%

0%

0%