Đề cương ôn tập giữa kì 1 Toán 10 Chân trời sáng tạo cấu trúc mới có đáp án - Bài 4. Tích vô hướng của hai vectơ
20 người thi tuần này 4.6 1.1 K lượt thi 11 câu hỏi 45 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Danh sách câu hỏi:
Câu 1
Lời giải
Ta có \(\left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC} = 60^\circ \). Chọn A.
Câu 2
Lời giải

Vì \(ABCD\) là hình bình hành nên \(\overrightarrow {AD} = \overrightarrow {BC} \).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {BC} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAD}\). Chọn C.
Câu 3
Lời giải
\(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|}} = \frac{{10}}{{4.5}} = \frac{1}{2}\). Chọn D.
Câu 4
Lời giải
Ta có \(\overrightarrow {BA} .\overrightarrow {BC} = BA.BC.\cos \widehat {ABC} = 5.8.\cos 30^\circ = 20\sqrt 3 \). Chọn B.
Câu 5
Lời giải

Ta có \(\widehat C = 90^\circ - \widehat B = 90^\circ - 60^\circ = 30^\circ \).
Có \(AC = AB.\tan 60^\circ = a\sqrt 3 \); \(BC = \frac{{AB}}{{\cos 60^\circ }} = 2a\).
\(\overrightarrow {AC} .\overrightarrow {CB} = - \overrightarrow {CA} .\overrightarrow {CB} = - \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|.\cos C = - a\sqrt 3 .2a.\cos 30^\circ = - 3{a^2}\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Cho tam giác ABC đều cạnh a. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho \(\overrightarrow {MC} = - 2\overrightarrow {MB} ,\overrightarrow {NA} = - \frac{1}{2}\overrightarrow {NC} \) và \(\overrightarrow {AP} = \frac{4}{{15}}\overrightarrow {AB} \).
a) Diện tích tam giác ABC là \(\frac{{{a^2}\sqrt 3 }}{2}\).
b) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {BC} = a\).
c) \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}\).
d) \(\overrightarrow {AM} .\overrightarrow {PN} = 2{a^2}\).
Cho tam giác ABC đều cạnh a. Trên các cạnh BC, CA, AB lấy lần lượt các điểm M, N, P sao cho \(\overrightarrow {MC} = - 2\overrightarrow {MB} ,\overrightarrow {NA} = - \frac{1}{2}\overrightarrow {NC} \) và \(\overrightarrow {AP} = \frac{4}{{15}}\overrightarrow {AB} \).
a) Diện tích tam giác ABC là \(\frac{{{a^2}\sqrt 3 }}{2}\).
b) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {BC} = a\).
c) \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{{a^2}}}{2}\).
d) \(\overrightarrow {AM} .\overrightarrow {PN} = 2{a^2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
