Đề cương ôn tập giữa kì 1 Toán 10 Chân trời sáng tạo cấu trúc mới có đáp án - Bài Tự luận
19 người thi tuần này 4.6 1.3 K lượt thi 20 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Lời giải
a) Mệnh đề trên sai vì 02 = 0.
Mệnh đề phủ định là: \(\exists x \in \mathbb{R}:{x^2} \le 0\). Đây là mệnh đề đúng.
b) Mệnh đề trên đúng vì \(\frac{1}{2} > {\left( {\frac{1}{2}} \right)^2}\).
Mệnh đề phủ định là: \(\forall x \in \mathbb{R}:x \le {x^2}\). Mệnh đề phủ định sai.
c) TH1: \(n = 3k\)
Ta có \({n^2} + 1 = {\left( {3k} \right)^2} + 1 = 9{k^2} + 1\) chia 3 dư 1.
TH2: \(n = 3k + 1\)
Ta có \({n^2} + 1 = {\left( {3k + 1} \right)^2} + 1 = 9{k^2} + 6k + 2\) chia 3 dư 2.
TH3: \(n = 3k + 2\)
Ta có \({n^2} + 1 = {\left( {3k + 2} \right)^2} + 1 = 9{k^2} + 12k + 5\) chia cho 3 dư 2.
Vậy \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3 là mệnh đề đúng.
Mệnh đề phủ định: \(\exists n \in \mathbb{N},{n^2} + 1\) chia hết cho 3. Mệnh đề này sai.
Lời giải
a) Ta có \[\left( {{x^2} - 1} \right)\left( {2{x^2} - 3x - 2} \right) = 0\]\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\2{x^2} - 3x - 2 = 0\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\x = 2\\x = - \frac{1}{2}\end{array} \right.\].
Vì \(x \in \mathbb{Z}\) nên \(x = \pm 1;x = 2\).
Vậy \(M = \left\{ { - 1;1;2} \right\}\).
b) Có \(A \cap B = \left[ {1;3} \right)\); \(A\backslash B = \left( { - 2;1} \right)\).
Lời giải
a) Ta có \(A = \left[ { - 3;5} \right)\) và \(B = \left[ {1; + \infty } \right)\)

Ta có \(A \cap B = \left[ {1;5} \right);A \cup B = \left[ { - 3; + \infty } \right);A\backslash B = \left[ { - 3;1} \right)\).
b) Ta có \(A = \left\{ {x \in \mathbb{R}|x \le 3} \right\}\) và \(B = \left\{ {x \in \mathbb{R}| - 2 < x < 2} \right\}\).
Ta có: \(A = \left( { - \infty ;3} \right]\) và \(B = \left( { - 2;2} \right)\).

Do đó \(A \cap B = \left( { - 2;2} \right);A \cup B = \left( { - \infty ;3} \right];A\backslash B = \left( { - \infty ; - 2} \right] \cup \left[ {2;3} \right]\).
Lời giải
Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m - 2 \le 3\\m - 10 \ge 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 5\\m \ge 14\end{array} \right.\).
Lời giải
a) Để \(A \cap B = \emptyset \) thì \(m \le 3m - 1 \Leftrightarrow m \ge \frac{1}{2}\).
b) Để \(B \subset A\) thì \(3m + 3 < m \Leftrightarrow 2m < - 3 \Leftrightarrow m < - \frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

