Đề kiểm tra Cuối chương 3 (có lời giải) - Đề 1
65 người thi tuần này 4.6 191 lượt thi 21 câu hỏi 45 phút
🔥 Đề thi HOT:
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
240 câu Bài tập Hàm số mũ, logarit ôn thi THPT Quốc gia có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
10000 câu trắc nghiệm tổng hợp môn Toán 2025 mới nhất (có đáp án) - Phần 1
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
215 câu Bài tập Hàm số mũ, logarit cơ bản, nâng cao có lời giải (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
238 câu Bài tâp Nguyên Hàm, Tích phân cơ bản, nâng cao cực hay có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(R = {a_{k + 1}} - {a_1}\).
Lời giải
Khoảng biến thiên của mẫu số liệu ghép nhóm trên là .. Chọn A
Câu 2
Lời giải
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là \({Q_3} - {Q_1}\).chọn C
Câu 3
Lời giải
Cỡ mẫu \(n = 80\). Giả sử \({x_1},{x_2}, \ldots ,{x_{80}}\) là thời gian đàm thoại của 80 cuộc gọi và giả sử dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Vì \(\frac{n}{4} = 20\) và \(8 < 20 < 8 + 17\) nên nhóm chứa tứ phân vị thứ nhất là nhóm \([1;2)\) và tứ phân vị thứ nhất là: \({Q_1} = 1 + \frac{{\frac{{80}}{4} - 8}}{{17}} \cdot 1 = \frac{{29}}{{17}}\)
vi \(\frac{{3n}}{4} = 60\) và \(8 + 17 + 25 < 60 < 8 + 17 + 25 + 20\) nên nhóm chứa tứ phân vị thứ ba là nhóm \([3;4)\) và tứ phân vị thứ ba là: \({Q_3} = 3 + \frac{{\frac{{3.80}}{4} - (8 + 17 + 25)}}{{20}} \cdot 1 = 3,5\)
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(3,5 - \frac{{29}}{{17}} = \frac{{61}}{{34}}\).
Câu 4
Lời giải
Tứ phân vị thứ nhất của dãy số liệu thuộc nhóm \([50;60)\) nên tứ phân vị thứ nhất của mẫu số liệu là \({Q_1} = 50 + \frac{{\frac{{40}}{4} - 7}}{{12}}(60 - 50) = 52,5\). Chọn C
Câu 5
Lời giải
Tứ phân vị thứ ba của dãy số liệu thuộc nhóm \([175;190)\) nên tứ phân vị thứ ba của mẫu số liệu là \({Q_3} = 175 + \frac{{\frac{{30.3}}{4} - (8 + 7 + 6)}}{7}(190 - 175) = 178,2\).CHỌN D
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. dùng để đo mức độ phân tán của mẫu số liệu ghép nhóm xung quanh số trung bình của mẫu số liệu đó.
B. cho biết vị trí trung tâm của mẫu số liệu và có thể dùng để đại diện cho mẫu số liệu.
C. chia mẫu số liệu thành hai phần, mỗi phần chứa 50% giá trị.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
Một trang trại phân 1000 quả trứng thành 5 loại, tùy theo khối lượng ( đã được làm tròn) của chúng được thống kê bởi bảng dưới đây:
\(\left[ {30;36} \right)\)
\(\left[ {36;42} \right)\)
\(\left[ {42;48} \right)\)
\(\left[ {48;54} \right)\)
\(\left[ {54;\,60} \right)\)
Số trứng
45
190
500
250
15
a) Tần suất của khối lượng trứng \(\left[ {30;36} \right)\)là \(19\% \).
b) Số trung vị của mẫu số liệu là 43.
c) Khoảng biến thiên của mẫu số liệu 39,18.
d) Độ lệch chuẩn của mẫu số liệu là \(\frac{{6\sqrt {17} }}{5}\).
Một trang trại phân 1000 quả trứng thành 5 loại, tùy theo khối lượng ( đã được làm tròn) của chúng được thống kê bởi bảng dưới đây:
\(\left[ {30;36} \right)\) |
\(\left[ {36;42} \right)\) |
\(\left[ {42;48} \right)\) |
\(\left[ {48;54} \right)\) |
\(\left[ {54;\,60} \right)\) |
|
Số trứng |
45 |
190 |
500 |
250 |
15 |
a) Tần suất của khối lượng trứng \(\left[ {30;36} \right)\)là \(19\% \).
b) Số trung vị của mẫu số liệu là 43.
c) Khoảng biến thiên của mẫu số liệu 39,18.
d) Độ lệch chuẩn của mẫu số liệu là \(\frac{{6\sqrt {17} }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 16
Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.
Bảng sau thống kê lại tổng số giờ nắng trong tháng 6 của các năm từ 2002 đến 2021 tại hai trạm quan trắc đặt ở Nha Trang và Quy Nhơn.
Số giờ nắng |
\([130;160)\) |
\([160;190)\) |
\([190;220)\) |
\([220;250)\) |
\([250;280)\) |
\([280;310)\) |
Số năm ở Nha Trang |
1 |
1 |
1 |
8 |
7 |
2 |
Số năm ở Quy Nhơn |
0 |
1 |
2 |
4 |
10 |
3 |
(Nguồn: Tổng cục Thống kê)
Các mệnh đề sau đúng hay sai?
a) Xét số liệu ở Nha Trang thì khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(32,64\)
b) Nếu so sánh theo khoảng tứ phân vị thì số giờ nắng trong tháng 6 của Quy Nhơn đồng đều hơn
c) Xét số liệu của Quy Nhơn ta có độ lệch chuẩn của mẫu số liệu ghép nhóm (làm tròn kết quả đến hàng phần trăm) là: \(30,59\)
d) Nếu so sánh theo độ lệch chuẩn thì số giờ nắng trong tháng 6 của Nha Trang đồng đều hơn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.