Bộ 10 đề thi giữa kì 1 Toán 12 Kết nối tri thức có đáp án - Đề 07
44 người thi tuần này 4.6 4.8 K lượt thi 22 câu hỏi 90 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: B
Từ bảng biến thiên, ta thấy hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right)\).
Câu 2
Lời giải
Đáp án đúng là: D
Từ bảng biến thiên, ta thấy hàm số đã cho đạt cực tiểu tại \[x = 1\] và giá trị cực tiểu \({y_{CT}} = - 2\).
Câu 3
Lời giải
Đáp án đúng là: A
Nhìn vào đồ thị hàm số đã cho, ta thấy:
\(m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 5\) khi \(x = - 2\) hoặc \(x = 1\);
\(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 1\) khi \(x = - 1\) hoặc \(x = 2\).
Câu 4
A. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(x = 2\) và \(x = - 2\).
D. Đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(y = 2\) và \(y = - 2\).
Lời giải
Đáp án đúng là: D
Dựa vào định nghĩa đường tiệm cận ngang của đồ thị hàm số, ta có:
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 2\) thì đồ thị hàm số đã cho có 2 tiệm cận ngang là các đường thẳng \(y = 2\) và \(y = - 2\).
Câu 5
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Hàm số đã cho đồng biến trên khoảng \(\left( {1; + \infty } \right)\)
B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;3} \right)\).
C. Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).
D. Hàm số đã cho nghịch biến trên khoảng \(\left( {1;3} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.








