Đề kiểm tra Đường tiệm cận của đồ thị hàm số (có lời giải) - Đề 4
24 người thi tuần này 4.6 523 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Cho hàm số \(y = \frac{{2{x^2} - 3x - 3}}{{x - 2}}\). Tiệm cận xiên của đồ thị hàm số là đường thẳng
Lời giải
Ta có :\(y = \frac{{2{x^2} - 3x - 3}}{{x - 2}} = 2x + 1 - \frac{1}{{x - 2}}\)\( \Rightarrow \mathop {\lim }\limits_{x \to \mp \infty } \left[ {y - \left( {2x + 1} \right)} \right] = \mathop {\lim }\limits_{x \to \mp \infty } \frac{{ - 1}}{{x - 2}} = 0\).
Do đó tiệm cận xiên của đồ thị hàm số là đường thẳng có phương trình \(y = 2x + 1\).
Câu 2
Lời giải
Ta có :\(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}} = 2x - 1 + \frac{1}{{x - 1}}\)nên đồ thị hàm số có tiệm cận đứng là đường thẳng\(x = 1\) và đường tiệm cận xiên là đường thẳng \(y = 2x - 1\).
Xét hệ phương trình \(\left\{ \begin{array}{l}x = 1\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\) nên giao điểm của hai đường tiệm cận là \(I\left( {1;\,1} \right)\).
Câu 3
Lời giải
Ta có :\[\mathop {\lim }\limits_{x \to - \infty } \,y = 2,\,\mathop {\lim }\limits_{x \to {0^ + }} \,y = + \infty \] nên hàm số có tiệm cận ngang là\(y = 2\)và tiệm cận
đứng là \(x = 0\).
Câu 4
Lời giải
Tập xác định :\(D = \left[ { - 9\,;\,\, + \infty } \right){\rm{\backslash }}\left\{ {0\,;\, - 1} \right\}\).
\(\mathop {\lim }\limits_{x \to 0} y = \mathop {\lim }\limits_{x \to 0} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 9} + 3} \right)}} = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 9} + 3} \right)}} = \frac{1}{6}\)\( \Rightarrow \)\(x = 0\) không là tiệm cận đứng của đồ thị hàm số.
\[\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\sqrt {x + 9} - 3}}{{{x^2} + x}} = + \infty \]\( \Rightarrow x = - 1\) là tiệm cận đứng của đồ thị hàm số.
Câu 5
Lời giải
Ta có \[\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \frac{{2x + 1}}{{x - 1}} = 2\].
Vậy \[y = 2\] là phương trình đường tiệm cận ngang của đồ thị hàm số \[y = \frac{{2x + 1}}{{x - 1}}\].
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.







