Đề kiểm tra Ôn tập cuối chương 2 (có lời giải) - Đề 3
38 người thi tuần này 4.6 698 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải

Với \[O\] là trung điểm của \[AC\], ta có \[\overrightarrow {SA} + \overrightarrow {SC} = 2\overrightarrow {SO} \].
Với \[O\] là trung điểm của \[BD\], ta có \[\overrightarrow {SB} + \overrightarrow {SD} = 2\overrightarrow {SO} \].
Từ đó suy ra \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \) và \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} + \overrightarrow {SD} = 4\overrightarrow {SO} \).
\[\overrightarrow {BC} + \overrightarrow {DA} = \overrightarrow {BA} + \overrightarrow {AC} + \overrightarrow {DC} + \overrightarrow {CA} = \overrightarrow {BA} + \overrightarrow {DC} + \left( {\overrightarrow {AC} + \overrightarrow {CA} } \right) = \overrightarrow {BA} + \overrightarrow {DC} \].
\(\overrightarrow {AB} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CB} + \overrightarrow {CB} + \overrightarrow {BD} = \overrightarrow {AC} + \overrightarrow {BD} + 2\overrightarrow {CB} \).
Câu 2
Lời giải

Ta có: \[\overrightarrow {{B_1}M} .\overrightarrow {B{D_1}} = \left( {\overrightarrow {{B_1}B} + \overrightarrow {BA} + \overrightarrow {AM} } \right)\left( {\overrightarrow {BA} + \overrightarrow {AD} + \overrightarrow {D{D_1}} } \right)\]
\[\begin{array}{l} = \overrightarrow {{B_1}B} .\overrightarrow {D{D_1}} + {\overrightarrow {BA} ^2} + \overrightarrow {AM} .\overrightarrow {AD} \\ = - {a^2} + {a^2} + \frac{{{a^2}}}{2}\\ = \frac{{{a^2}}}{2}\end{array}\]
Câu 3
Lời giải
Câu 4
Lời giải
Áp dụng định lí: trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(A\left( {{x_A};{y_A};{z_A}} \right)\) và \(B\left( {{x_B};{y_B};{z_B}} \right)\). Khi đó, ta có: \[\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right)\].
Ta có: \[\overrightarrow {MN} = \left( {\frac{1}{2} - \frac{1}{2};\left( { - 2} \right) - 1;4 - \left( { - 3} \right)} \right) = \left( {0; - 3;7} \right)\].
Câu 5
Lời giải
Ta có \[\overrightarrow {AB} = \left( {4;x - 5;2} \right),\,\,\overrightarrow {AC} = \left( {6; - 3;y + 1} \right)\]
\(A,\,\,B,\,\,C\)thẳng hàng khi \[\overrightarrow {AB} ,\,\,\overrightarrow {AC} \] cùng phương \[ \Leftrightarrow \frac{4}{6} = \frac{{x - 5}}{{ - 3}} = \frac{2}{{y + 1}} \Leftrightarrow \left\{ \begin{array}{l}6\left( {x - 5} \right) = - 12\\4\left( {y + 1} \right) = 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 2\end{array} \right.\]
Vậy \(x + y = 5.\)
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



