Đề kiểm tra Tính đơn điệu và cực trị của hàm số (có lời giải) - Đề 3
24 người thi tuần này 4.6 342 lượt thi 22 câu hỏi 45 phút
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Từ bảng biến thiên ta thấy mệnh đề: “ Hàm số nghịch biến trên khoảng \(\left( { - \infty \,;\,2} \right)\)” là sai vì hàm số \(y = f\left( x \right)\) không xác định tại \(x = 0\).
Câu 2
Lời giải
Dễ thấy B là phương án đúng.
Câu 3
Lời giải
Ta có: \(f'\left( x \right) = 0 \Leftrightarrow {\left( {1 - x} \right)^2}{\left( {x + 1} \right)^3}\left( {3 - x} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1\,\,\,}\\{x = - 1}\\{x = 3\,\,\,}\end{array}} \right.\).
Bảng xét dấu:

Từ bảng xét dấu ta thấy hàm số đồng biến trên khoảng \(\left( { - 1;\,3} \right)\).
Câu 4
Lời giải
Dựa vào đồ thị hàm số \(y = f'\left( x \right)\) ta có:
\(f'\left( x \right) > 0\) ,\(\forall x \in \left( {2; + \infty } \right)\).
\(f'\left( x \right) \le 0\) , \(\forall x \in \left( { - \infty ;2} \right)\) .
Do đó hàm số \(y = f\left( x \right)\) đồng biến trên \(\left( {2; + \infty } \right)\)và nghịch biến trên \(\left( { - \infty ;2} \right)\).
Câu 5
Lời giải
Tập xác định: \[D = \mathbb{R}\backslash \left\{ 1 \right\}\].
\[y' = - \frac{2}{{{{\left( {x - 1} \right)}^2}}} < 0,\,\,\forall x \in D\] nên hàm số đã cho nghịch biến trên các khoảng \[\left( { - \infty ;1} \right)\] và \[\left( {1; + \infty } \right)\].
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.







![Hàm số \[y = f\left( x \right)\] đồng biến trên khoảng \(\left( { - \infty \,;\,0} \right)\), (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/screenshot-3626-1759133053.png)


![Tìm tất cả các khoảng đồng biến của hàm số \[y = f\left( {2 - {x^2}} \right)\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/13-1759133388.png)

