Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Quảng Nam
31 người thi tuần này 4.6 193 lượt thi 22 câu hỏi 60 phút
🔥 Đề thi HOT:
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án đúng là: B
Cách 1. Sử dụng MTCT để tìm nghiệm của hệ hai phương trình \(\left\{ \begin{array}{l}x - y = - 2\\x + y = 0.\end{array} \right.\)
Với MTCT phù hợp, ta bấm lần lượt các phím:
Trên màn hình cho kết quả \(x = - 1,\) ta bấm tiếp phím màn hình cho kết quả \(y = 1.\)
Vậy cặp số \[\left( {--1\,;\,\,1} \right)\] là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = - 2\\x + y = 0.\end{array} \right.\)
Cách 2. Thay \(x = 1;\,\,y = - 1\) vào hệ phương trình đã cho, ta được:
\(\left\{ \begin{array}{l}2 \cdot 1 + 3 \cdot \left( { - 1} \right) = - 1\,\,\left( { \ne - 2} \right)\\1 + \left( { - 1} \right) = 0\,\,\left( { \ne 1} \right)\end{array} \right..\)
Tương tự, thay giá trị của \(x\) và \(y\) lần lượt của các cặp số ở phương án B, C, D vào hệ phương trình đã cho, ta thấy chỉ có cặp số \[\left( {--1\,;\,\,1} \right)\] là nghiệm của cả hai phương trình trong hệ.
Vậy cặp số \[\left( {--1\,;\,\,1} \right)\] là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x - y = - 2\\x + y = 0.\end{array} \right.\)
Cách 3. Giải hệ phương trình \(\left\{ \begin{array}{l}x - y = - 2\\x + y = 0.\end{array} \right.\)
Cộng từng vế hai phương trình của hệ phương trình trên, ta được: \(2x = - 2\) nên \(x = - 1.\)
Thay \(x = - 1\) vào phương trình \(x + y = 0,\) ta được:
\( - 1 + y = 0,\) nên \(y = 1.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là \[\left( {--1\,;\,\,1} \right).\]
Lời giải
Đáp án đúng là: D
Bất phương trình có dạng \[ax + b < 0\] (hoặc \[ax + b > 0\,;\,\,ax + b \le 0\,;\,\,ax + b \ge 0\,)\] trong đó \[a\,,\,\,b\] là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn \(x.\)
Các bất phương trình \(2x + 1 \ge 0\,,\,\,2 - 3x < 0\,,\,\, - 2x \le 0\) có dạng trên là bất phương trình bậc nhất một ẩn.
Bất phương trình \[{x^2} + x < 2\] có vế trái là đa thức bậc hai, vế phải là 2 nên không phải là bất phương trình bậc nhất một ẩn.
Vậy chọn đán án D.
Lời giải
Đáp án đúng là: A
Căn bậc hai của 49 là 7 và \[--7.\]
Lời giải
Đáp án đúng là: D
Phương trình bậc hai \[a{x^2} + bx + c = 0\] có biệt thức \[\Delta = {b^2} - 4ac\] .
Lời giải
Đáp án đúng là: B
Điều kiện xác định của \(\sqrt x \) là \[x \ge 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 1
PHẦN II. TỰ LUẬN (7,0 điểm)
Câu 13-14. (1,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 2
Câu 15-16: (1,0 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Câu 17-18: (1,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Câu 19-21: (2,5 điểm) Cho tam giác \[ABC\] nhọn \[\left( {AB < AC} \right)\] có đường cao \[AD\] và đường phân giác trong \[AO\] \[\left( {D,O} \right.\] thuộc cạnh \[\left. {BC} \right).\] Kẻ \[OM\] vuông góc với \[AB\] tại \[M,\,\,ON\] vuông góc với \[AC\] tại \[N.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.