Đề thi tuyển sinh vào lớp 10 Toán năm học 2017 - 2018 Sở GD&ĐT TP.HCM có đáp án
54 người thi tuần này 4.6 54 lượt thi 7 câu hỏi 45 phút
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có \[{x^2} = \left( {x - 1} \right)\left( {3x - 2} \right) \Leftrightarrow {x^2} = 3{x^2} - 2x - 3x + 2\]\[ \Leftrightarrow 2{x^2} - 5x + 2 = 0\].
Tính \[\Delta = {\left( { - 5} \right)^2} - 4.2.2 = 25 - 16 = 9,\,\sqrt \Delta = 3\].
Phương trình có hai nghiệm \[{x_1} = \frac{{5 - 3}}{{2.2}} = \frac{1}{2},\,\,{x_2} = \frac{{5 + 3}}{{2.2}} = 2\].
Tập nghiệm của phương trình: \[S = \left\{ {2;\,\,\frac{1}{2}} \right\}\].
Lời giải
Gọi \[x,\,\,y\] (m) lần lượt là chiều dài và chiều rộng của miếng đất.
Nửa chu vi miếng đất là 100 : 2 = 50 (m).
Khi đó: \[x + y = 50\].
Và \[5y = 2x + 40 \Leftrightarrow 2x - 5y = - 40\]. Ta có hệ phương trình \[\left\{ \begin{array}{l}x + y = 50\\2x - 5y = - 40\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 2x - 2y = - 100\\2x - 5y = - 40\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 50\\ - 7y = - 140\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = 50 - y\\y = 20\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 30\\y = 20\end{array} \right.\].
Vậy chiều dài của miếng đất là 30 (m) và chiều rộng là 20 (m).
Lời giải
a) Vẽ đồ thị hàm số \(y = \frac{1}{4}{x^2}\).
Tập xác định \[D = \mathbb{R}\].
Bảng giá trị
|
\[x\,\] |
\[ - 2\] |
\[ - 1\] |
0 |
1 |
2 |
|
\[y\] |
1 |
\[\frac{1}{4}\] |
0 |
\[\frac{1}{4}\] |
1 |
Đồ thị

b) Đường thẳng \[\left( D \right)\]: \(y = \frac{3}{2}x + m\) đi qua điểm \[C\left( {6;\,7} \right)\]nên ta có:
\[7 = \frac{3}{2}.6 + m \Leftrightarrow m = - 2\].
Vậy đường thẳng \[\left( D \right)\] có phương trình \[y = \frac{3}{2}x - 2\].
Phương trình hoành độ giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[\frac{1}{4}{x^2} = \frac{3}{2}x - 2\]
\[ \Leftrightarrow \frac{1}{4}{x^2} - \frac{3}{2}x + 2 = 0 \Leftrightarrow {x^2} - 6x + 8 = 0\]
Ta có: \[\Delta ' = {\left( { - 3} \right)^2} - 1.8 = 1 > 0\]. Phương trình có hai nghiệm \[{x_1} = 3 + 1 = 4,\,{x_2} = 3 - 1 = 2\]
Khi đó, \[{y_1} = \frac{3}{2}{x_1} - 2 = \frac{3}{2}.4 - 2 = 4,\,{y_2} = \frac{3}{2}{x_2} - 2 = \frac{3}{2}.2 - 2 = 1\].
Vậy tọa độ các giao điểm của \[\left( D \right)\] và \[\left( P \right)\] là \[A\left( {4;\,\,4} \right),\,\,B\left( {2;\,\,1} \right)\].
Lời giải
Ta có:
\(A = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{14 - 6\sqrt 3 }}{{5 + \sqrt 3 }}} \) \[ = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{\left( {14 - 6\sqrt 3 } \right)\left( {5 - \sqrt 3 } \right)}}{{\left( {5 + \sqrt 3 } \right)\left( {5 - \sqrt 3 } \right)}}} \]
\[ = \left( {\sqrt 3 + 1} \right)\sqrt {\frac{{88 - 44\sqrt 3 }}{{22}}} = \left( {\sqrt 3 + 1} \right)\sqrt {4 - 2\sqrt 3 } \]
\[ = \left( {\sqrt 3 + 1} \right)\sqrt {{{\left( {\sqrt 3 - 1} \right)}^2}} = \left( {\sqrt 3 + 1} \right)\left( {\sqrt 3 - 1} \right) = 3 - 1 = 2\].
Lời giải

a) Xét tam giác \[ABC\] có đường cao \[CH\], ta có:
\[AH = \frac{{CH}}{{\tan 6^\circ }};\,\,BH = \frac{{CH}}{{\tan 4^\circ }}\]
Mà \[AH + BH = AB = 762 \Rightarrow \frac{{CH}}{{\tan 6^\circ }} + \frac{{CH}}{{\tan 4^\circ }} = 762\]
Suy ra \[CH = 762:\left( {\frac{1}{{\tan 6^\circ }} + \frac{1}{{\tan 4^\circ }}} \right) \approx 32\].
Vậy \[h = 32\] m.
b) Xét tam giác \[ABC\] có đường cao \[CH\], ta có:
\[\sin 6^\circ = \frac{{CH}}{{AC}} \Rightarrow AC = \frac{{CH}}{{\sin 6^\circ }} \approx \frac{{32}}{{\sin 6^\circ }} \approx 306\];
\[\sin 4^\circ = \frac{{CH}}{{BC}} \Rightarrow BC = \frac{{CH}}{{\sin 4^\circ }} \approx \frac{{32}}{{\sin 4^\circ }} \approx 459\].
Thời gian di chuyển từ \[A\] đến \[B\]:
- Thời gian đi từ \[A\] đến \[C\]: \[{t_{AC}} = \frac{{AC}}{4} \approx \frac{{\frac{{306}}{{1000}}}}{4} = 0,0765\] (giờ)
- Thời gian di chuyển từ \[C\] đến \[B\]: \[{t_{CB}} = \frac{{CB}}{{19}} \approx \frac{{\frac{{459}}{{1000}}}}{{19}} \approx 0,024\](giờ)
- Thời gian di chuyển từ \[A\] đến \[B\]: \[{t_{AB}} = 0,0765 + 0,024 = 0,1005\](giờ) \[ \approx 6\] (phút).
Vậy bạn An đến trường lúc 6 giờ 6 phút.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.