Đề thi thử TS vào 10 (Tháng 2) năm học 2025 - 2026_Môn Toán_THCS Xuân La_Quận Tây Hồ_TP. Hà Nội
60 người thi tuần này 4.6 349 lượt thi 13 câu hỏi 60 phút
🔥 Đề thi HOT:
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_TP Phú Thọ
54 bài tập Hàm số bậc hai và giải bài toán bằng cách lập phương trình có lời giải
Đề thi tham khảo TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Bình Phước
Nội dung liên quan:
Danh sách câu hỏi:
Đoạn văn 1
Câu 1-2: (1,5 điểm)
Lời giải
1) Tần số ghép nhóm của nhóm là 6 .
Tần số tương đối ghép nhóm của nhóm là
Lời giải
Không gian mẫu của phép thử là \[\Omega = \left\{ {1;\,\,2;\,\,3;\,\,...;\,\,19;\,\,20} \right\}.\]
Không gian mẫu có 20 phần tử.
Có \[6\] kết quả thuận lợi cho biến cố \[A\] là \[3;\,\,6;\,\,9;\,\,12;\,\,15;\,\,18.\]
Vậy \[P\left( A \right) = \frac{6}{{20}} = \frac{3}{{10}}.\]
Đoạn văn 2
Cho hai biểu thức và với
Lời giải
Thay \(x = 1\) (thỏa mãn điều kiện) vào biểu thức \(A\) ta được: \(A = \frac{{2\sqrt 1 + 7}}{{\sqrt 1 + 2}} = \frac{{2 + 7}}{{1 + 2}} = \frac{9}{3} = 3.\)
Vậy \(A = 3\) khi \(x = 1.\)
Lời giải
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(B = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{x - 4}}\)\( = \frac{1}{{\sqrt x - 2}} + \frac{{\sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{\sqrt x + 2 + \sqrt x - 6}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{{2\sqrt x - 4}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \frac{{2\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)\( = \frac{2}{{\sqrt x + 2}}.\)
Vậy với \(x \ge 0,\,x \ne 4\) thì \(B = \frac{2}{{\sqrt x + 2}}.\)
Lời giải
Với \(x \ge 0,\,x \ne 4,\) ta có:
\(A + B = \frac{{2\sqrt x + 7}}{{\sqrt x + 2}} + \frac{2}{{\sqrt x + 2}} = \frac{{2\sqrt x + 9}}{{\sqrt x + 2}} = \frac{{2\left( {\sqrt x + 2} \right) + 5}}{{\sqrt x + 2}} = 2 + \frac{5}{{\sqrt x + 2}}.\)
⦁ Do \(x \ge 0\)nên \(\sqrt x \ge 0.\)
Khi đó \(\sqrt x + 2 > 0\) nên \[\frac{5}{{\sqrt x + 2}} > 0\]. Suy ra \(2 + \frac{5}{{\sqrt x + 2}} > 2\) hay \(A + B > 2\,\,(1)\)
⦁ Vì\(\sqrt x \ge 0\) nên \(\sqrt x + 2 \ge 2.\) Suy ra \(\frac{5}{{\sqrt x + 2}} \le \frac{5}{2}.\) Do đó \(2 + \frac{5}{{\sqrt x + 2}} \le \frac{9}{2}\) hay \(A + B \le \frac{9}{2}\,(2)\)
Từ (1) và (2) suy ra \(2 < A + B \le \frac{9}{2}.\)
Để \(A + B\) đạt giá trị nguyên nhỏ nhất thì \(A + B = 3.\)
Suy ra \(2 + \frac{5}{{\sqrt x + 2}} = 3\)
\(\frac{5}{{\sqrt x + 2}} = 1\)
\(\sqrt x + 2 = 5\)
\(\sqrt x = 3\)
\(x = 9\) (thỏa mãn).
Vậy \(x = 9\,\)thì biểu thức \(A + B\) đạt giá trị nguyên nhỏ nhất bằng 3.
Đoạn văn 3
Câu 6-8 (2,5 điểm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.