Đề thi tuyển sinh vào lớp 10 Toán năm học 2019 - 2020 Sở GD&ĐT Đà Nẵng có đáp án
62 người thi tuần này 4.6 62 lượt thi 8 câu hỏi 45 phút
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
\(A = \sqrt {12} + \sqrt {18} - \sqrt 8 - 2\sqrt 3 \)
\( = \sqrt {3.4} + \sqrt {9.2} - \sqrt {4.2} - 2\sqrt 3 \)
\( = 2\sqrt 3 + 3\sqrt 2 - 2\sqrt 2 - 2\sqrt 3 \)
\( = \sqrt 2 \).
Lời giải
Với \(x \ge - 1\), ta có:
\(B = \sqrt {9x + 9} + \sqrt {4x + 4} + \sqrt {x + 1} \)
\( = \sqrt {9\left( {x + 1} \right)} + \sqrt {4\left( {x + 1} \right)} + \sqrt {x + 1} \)
\( = 3\sqrt {x + 1} + 2\sqrt {x + 1} + \sqrt {x + 1} \)
\( = 6\sqrt {x + 1} \).
Ta có: \(B = 18 \Leftrightarrow 6\sqrt {x + 1} = 18 \Leftrightarrow \sqrt {x + 1} = 3 \Leftrightarrow x + 1 = 9 \Leftrightarrow x = 8(tm)\)
Vậy \(x = 8\) thì \(B = 18\).
Lời giải
\(\left\{ \begin{array}{l}x + 2y = 3\\4x + 5y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4x + 8y = 12\\4x + 5y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3y = 6\\x = 3 - 2y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 2\\x = - 1\end{array} \right.\).
Vậy hệ phương trình có nghiệm duy nhất là \(\left( {x;y} \right) = \left( { - 1;2} \right)\).
Lời giải
Đặt \(t = {x^2}(t \ge 0)\). Khi đó phương trình trở thành:
\[4{t^2} + 7t - 2 = 0\]
\[ \Leftrightarrow 4{t^2} + 8t - t - 2 = 0\]
\[ \Leftrightarrow 4t\left( {t + 2} \right) - \left( {t + 2} \right) = 0\]
\[ \Leftrightarrow \left( {t + 2} \right)\left( {4t - 1} \right) = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}t = - 2\left( {ktm} \right)\\t = \frac{1}{4}\left( {tm} \right)\end{array} \right.\]
Với \[t = \frac{1}{4} \Rightarrow {x^2} = \frac{1}{4} \Leftrightarrow x = \pm \frac{1}{2}\].
Vậy phương trình đã cho có tập nghiệm \(S = \left\{ { - \frac{1}{2};\frac{1}{2}} \right\}\)
Lời giải
a) • Vẽ đồ thị hàm số \(y = 2{x^2}\):
Hàm số \(y = 2{x^2}\) có hệ số \(a = 2 > 0\) nên hàm số đồng biến khi \(x > 0\), nghịch biến khi \(x < 0\) và đồ thị hàm số là parabol có bề lõm quay lên trên, nhận trục \(Oy\) làm trục đối xứng.
Bảng giá trị:
|
\(x\) |
\( - 2\) |
\( - 1\) |
0 |
1 |
2 |
|
\(y = 2{x^2}\) |
8 |
2 |
0 |
2 |
8 |
Vậy đồ thị hàm số \(y = 2{x^2}\) là parabol đi qua các điểm \(\left( { - 2;8} \right),\left( { - 1;2} \right),\left( {0;0} \right),\left( {1;2} \right),\left( {2;8} \right)\).
• Vẽ đồ thị hàm số \(y = - 2x + 4\):

Cho \(x = 0\) thì \(y = 4\), ta được điểm \(\left( {0;4} \right)\).
Cho \(y = 0\) thì \(x = 2\), ta được điểm \(\left( {2;0} \right)\).
Đồ thị hàm số \(y = - 2x + 4\) là đường thẳng đi qua 2 điểm trên.
Ta vẽ các đồ thị hàm số \(y = 2{x^2}\) và \(y = - 2x + 4\) trên cùng một mặt phẳng tọa độ như sau:
b) Xét phương trình hoành độ giao điểm của đường thẳng \(y = - 2x + 4\)và parabol \(y = 2{x^2}\):
\( \Leftrightarrow {x^2} + x - 2 = 0\)
\( \Leftrightarrow {x^2} - x + 2x - 2 = 0\)
\( \Leftrightarrow \left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 1 = 0\\x + 2 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\end{array} \right.\)
Với \(x = 1 \Rightarrow y = 2\)
Với \(x = - 2 \Rightarrow y = 8\)
Vậy giao điểm của hai đồ thị hàm số đã cho là \(A\left( {1;2} \right);B\left( { - 2;8} \right)\).
* Tính khoảng cách từ \(M\left( { - 2;0} \right)\) đến đường thẳng \[AB\].

Kẻ \(MH \bot AB\left( {M \in AB} \right).\)
Do đó khoảng cách từ \(M\left( { - 2;0} \right)\) xuống đường thẳng \[AB\] chính là độ dài đoạn thẳng \(MH.\)
Gọi \(C\) là giao điểm của \(AB\) và \(Ox\) \( \Rightarrow C\left( {2;0} \right)\).
Dễ thấy \(\Delta MAC\) vuông tại \(M\), \(MA = 8,MC = 4\)
Áp dụng hệ thức lượng cho tam giác vuông \(\Delta MAC\), ta có:
\(\frac{1}{{M{H^2}}} = \frac{1}{{M{A^2}}} + \frac{1}{{M{C^2}}} = \frac{1}{{{8^2}}} + \frac{1}{{{4^2}}} = \frac{5}{{64}}\)
\( \Leftrightarrow MH = \frac{{8\sqrt 5 }}{5}\) (đơn vị dài)
Vậy khoảng cách cần tìm là \(MH = \frac{{8\sqrt 5 }}{5}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.