Đề thi tuyển sinh vào lớp 10 Toán năm học 2022 - 2023 Sở GD&ĐT TP.HCM có đáp án
37 người thi tuần này 4.6 59 lượt thi 8 câu hỏi 45 phút
🔥 Đề thi HOT:
Đề minh họa thi vào lớp 10 môn Toán năm 2026 TP. Hồ Chí Minh
Đề thi tuyển sinh vào lớp 10 Toán năm học 2023 - 2024 Sở GD&ĐT Hà Nội có đáp án
Đề thi thử TS vào 10 (Tháng 1) năm học 2025 - 2026_Môn Toán_THCS Cầu Giấy_Quận Cầu Giấy
63 bài tập Tỉ số lượng giác và ứng dụng có lời giải
52 bài tập Hệ thức lượng trong tam giác có lời giải
52 bài tập Hệ Phương trình bậc nhất hai ẩn và giải hệ phương trình bậc nhất hai ẩn có lời giải
45 bài tập Phương trình quy về phương trình bậc nhất 2 ẩn và hệ phương trình bậc nhất 2 ẩn có lời giải
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Lập bảng giá trị:
|
\[x\] |
-4 |
-2 |
0 |
2 |
4 |
|
\[\left( P \right):y = \frac{1}{4}{x^2}\] |
4 |
1 |
0 |
1 |
4 |
|
\[x\] |
0 |
4 |
|
\[\left( d \right):y = - \frac{1}{2}x + 2\] |
2 |
0 |
Parabol \[\left( P \right)\] là đường cong đi qua các điểm có tọa độ \[\left( { - 4;\,4} \right),\,\left( { - 2;\,1} \right),\,\left( {0;\,0} \right)\],\[\left( {2;\,1} \right)\],\[\left( {4;\,4} \right)\].
Đường thẳng \[\left( d \right)\] đi qua hai điểm có tọa độ \[\left( {0;\,2} \right),\,\left( {4;\,0} \right)\].
Vẽ \[\left( P \right)\] và \[\left( d \right)\] trên cùng hệ trục tọa độ, ta được:
b) Hoành độ giao điểm của \[\left( d \right)\] và \[\left( P \right)\] là nghiệm của phương trình:
\[\frac{1}{4}{x^2} = - \frac{1}{2}x + 2\]
\[ \Leftrightarrow {x^2} + 2x - 8 = 0\]
\[ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\]
Với \[x = 2 \Rightarrow y = 1\] ta có giao điểm \[A\left( {2;\,1} \right)\].
Với \[x = - 4 \Rightarrow y = 4\] ta có giao điểm \[B\left( { - 4;\,4} \right)\].
Vậy tọa độ giao điểm của \[\left( P \right)\] và \[\left( d \right)\] là \[A\left( {2;\,1} \right)\]và \[B\left( { - 4;\,4} \right)\].
Lời giải
Ta có \[{x_1},\,{x_2}\] là nghiệm của phương trình \[2{x^2} - 5x - 3 = 0\].
Áp dụng hệ thức Vi-et ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{5}{2}\\{x_1}{x_2} = \frac{{ - 3}}{2}\end{array} \right.\]
\[A = \left( {{x_1} + 2{x_2}} \right)\left( {{x_2} + 2{x_1}} \right)\]
\[ = {x_1}{x_2} + 2x_1^2 + 2x_2^2 + 4{x_1}{x_2}\]
\[ = 2\left( {x_1^2 + x_2^2} \right) + 5{x_1}{x_2}\]
\[ = 2{\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} + 5{x_1}{x_2}\]
\[ = 2{\left( {{x_1} + {x_2}} \right)^2} + {x_1}{x_2}\]
\[ = 2.{\left( {\frac{5}{2}} \right)^2} + \left( { - \frac{3}{2}} \right) = 11\].
Lời giải
a) Ta có:
2005 : 10 = 200 dư 5 Þ CAN = “ẤT”.
2005 : 12 = 167 dư 1 Þ CHI = “DẬU”.
Vậy năm 2005 có CAN là “Ất”, CHI là “Dậu”.
b) Gọi \[x\] là năm Nguyễn Huệ lên ngôi hoàng đế \[\left( {x \in \mathbb{N}} \right)\].
Do \[x\] thuộc cuối thế kỉ 18 nên \[1750 \le x \le 1799\].
Do CAN của \[x\] là Mậu nên \[x\] : 10 dư 8.
Suy ra hàng đơn vị của \[x\] là số 8.
Suy ra \[x\] là một trong các năm 1758, 1768, 1778, 1788, 1798.
Do CHI của \[x\] là “Thân” nên \[x\] chia hết cho 12.
Vậy chỉ có năm 1788 thỏa mãn.
Vậy Nguyễn Huệ lên ngôi hoàng đế năm 1788.
Lời giải
Theo đề ta có hệ phương trình \[\left\{ \begin{array}{l}100a + b = 40\\4a + b = 28\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{5}\\b = 20\end{array} \right.\]
Vậy \[a = \frac{1}{5},\,b = 20\].
Lời giải
Gọi \[x\] là số xe mà anh Thành bán được trong tháng 5.
Theo đề ta có phương trình
\[8\,000\,000 + \left( {x - 31} \right).8\% .2\,500\,000 = \,9800\,000\]
Giải phương trình trên ta được \[x = 40\].
Vậy anh Thành bán được 40 chiếc xe máy trong tháng 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
