Bộ 10 đề thi giữa kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 9
30 người thi tuần này 4.6 4.9 K lượt thi 13 câu hỏi 60 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Dạng 1: Giải hệ phương trình bằng phương pháp đặt ẩn phụ
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
a) Sai. Thay \[x = - 2\,;{\rm{ }}y = 1\] vào phương trình \[\left( * \right)\], ta được:
\[2 \cdot \left( { - 2} \right)--5 \cdot 1 = --\,4--5 = --9 \ne 1.\]
Do đó cặp số \[\left( { - 2\,;\,\,1} \right)\] không phải là nghiệm của phương trình \[\left( * \right)\].
b) Đúng. Phương trình \[\left( * \right)\] là phương trình bậc nhất hai ẩn \[x,{\rm{ }}y\] và có vô số nghiệm.
c) Sai. Hệ số \[a;\,\,b;\,\,c\] của phương trình \[\left( * \right)\] là \[2\,;\,\, - 5\,;\,\,1.\]
d) Đúng. Ta có \[2x - 5y = 1\] suy ra \[5y = 2x - 1\] nên \[y = \frac{2}{5}x - \frac{1}{5}\].
Do đó, tập hợp các điểm có tọa độ \(\left( {x\,;\,\,y} \right)\) thỏa mãn phương trình \[\left( * \right)\] là đường thẳng \[y = \frac{2}{5}x - \frac{1}{5}.\]
Câu 2
A. \(x \ne 3.\)
B. \(x \ne - 3.\)
C. \(x \ne 0\) và \(x \ne 3.\)
D. \(x \ne - 3\) và \(x \ne 3.\)
Lời giải
Vì \(x - 3 \ne 0\) khi \(x \ne 3\) và \(x + 3 \ne 0\) khi \(x \ne - 3\) nên ĐKXĐ của phương trình \[2 + \frac{1}{{x - 3}} = \frac{5}{{x + 3}}\] là \(x \ne - 3\) và \(x \ne 3.\)
Câu 3
A. \[x + y > 8\].
B. \[0x + 5 \ge 0\].
C. \[2x--3 > 4\;\].
D. \[{x^2} - 6x + 1 \le 0.\]
Lời giải
Bất phương trình có dạng \[ax + b < 0\] (hoặc \[ax + b > 0\,;\,\,ax + b \le 0\,;\,\,ax + b \ge 0\,)\] trong đó \[a\,,\,\,b\] là hai số đã cho, \(a \ne 0\) được gọi là bất phương trình bậc nhất một ẩn \(x.\)</>
Bất phương trình \[x + y > 8\] có hai ẩn \(x\,,\,\,y\) nên không phải là bất phương trình bậc nhất một ẩn.
Bất phương trình \[0x + 5 \ge 0\] có dạng \[ax + b \ge 0\] và \(a = 0\) nên không phải là bất phương trình bậc nhất một ẩn.
Ta có \[2x--3 > 4\;\] hay \[2x--7 > 0\;\]. Bất phương trình \[2x--7 > 0\;\] có dạng \[ax + b > 0\] và \(a = 2\) nên là bất phương trình bậc nhất một ẩn.
Bất phương trình \[{x^2} - 6x + 1 \le 0\] có vế trái là đa thức bậc hai, vế phải là 0 nên không phải là bất phương trình bậc nhất một ẩn.
Vậy chọn đán án C.
Câu 4
A. \(\cot \alpha \).
B. \[\cos \alpha \].
C. \(\sin \alpha \).
D. \(\tan \alpha .\)
Lời giải
Đáp án đúng là: B
Xét \(\Delta MPH\) vuông tại \[H,\] ta có:
\(\cos P = \frac{{PH}}{{MP}}\) hay \(\cos \alpha = \frac{{PH}}{{MP}}.\)
Vậy chọn đáp án B.
Câu 5
A. \(AB = BC \cdot \sin C.\)
B. \(AC = AB \cdot \cot C.\)
C. \(AB = AC \cdot \tan B.\)
D. \(AB = BC \cdot \cos B.\)
Lời giải
Đáp án đúng là: B Tam giác \[ABC\] vuông tại \[A\], ta có \(AB = BC \cdot \sin C = BC \cdot \cos B = AC \cdot \tan C\,;\) \(AC = BC \cdot \cos C = AB \cdot \cot C.\) |
|
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.