5 câu Trắc nghiệm Toán 10 Cánh diều Bài 5. Bài tập cuối chương 5 (Phần 2) có đáp án (Vận dụng)
21 người thi tuần này 4.6 1.1 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Trường hợp 1: Chọn 1 cuốn tiểu thuyết và 1 cuốn truyện tranh
Có 10 cách chọn 1 cuốn tiểu thuyết; Có 8 các chọn 1 cuốn truyện tranh
Do đó có 10. 8 = 80 cách chọn
Trường hợp 2: Chọn 1 cuốn tiểu thuyết và 1 cuốn tài liệu văn học
Có 10 cách chọn 1 cuốn tiểu thuyết; Có 6 cách chọn 1 cuốn tài liệu văn học
Do đó có 10. 6 = 60 cách chọn
Trường hợp 3: Chọn 1 cuốn truyện tranh và 1 cuốn tài liệu văn học
Có 8 cách chọn 1 cuốn truyện tranh và 6 cách chọn 1 cuốn tài liệu văn học
Do đó có 8. 6 = 48 cách chọn
Tổng số cách chọn là:
80 + 60 + 48 = 188 (cách chọn).
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
ĐK: n ≥ 2, n ∈ ℕ
\(C_n^2 + A_n^2 = 9n.\)
\( \Leftrightarrow \frac{{n!}}{{2!\left( {n - 2} \right)!}} + \frac{{n!}}{{\left( {n - 2} \right)!}} = 9n\)
\( \Leftrightarrow \frac{{n.(n - 1)(n - 2)!}}{{2!.\left( {n - 2} \right)!}} + \frac{{n.(n - 1).(n - 2)!}}{{\left( {n - 2} \right)!}} = 9n\)
\( \Leftrightarrow \frac{{n.(n - 1)}}{2} + n.(n - 1) = 9n\)
\( \Leftrightarrow (n - 1)\left( {\frac{n}{2} + n} \right) = 9n\)
\( \Leftrightarrow \frac{3}{2}n\left( {n - 1} \right) = 9n\)
\[ \Leftrightarrow \frac{3}{2}{n^2} - \frac{3}{2}n - 9n = 0\]
\( \Leftrightarrow 3{n^2} - 3n - 18n = 0\)
\( \Leftrightarrow 3{n^2} - 21n = 0\)
\( \Leftrightarrow 3n\left( {n - 7} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}3n = 0\\n - 7 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}n = 0(ktm)\\n = 7(tm)\end{array} \right.\)
Vậy n chia hết cho 7.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có:
\(M = \frac{{A_n^6 + A_n^5}}{{A_n^4}}\)
= \(\frac{{n.(n - 1).(n - 2)...(n - 5) + n(n - 1).(n - 2)...(n - 4)}}{{n(n - 1)...(n - 3)}}\)
\( = \frac{{n(n - 1)(n - 2)(n - 3)\left[ {(n - 4)(n - 5) + (n - 4)} \right]}}{{n(n - 1)(n - 2)(n - 3)}}\)
= (n – 4)(n – 5) + (n – 4)
= n2 – 4n – 5n + 20 + n – 4
= n2 – 8n + 16 = (n – 4)2.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
\[{\left( {1 + x + {x^2} + {x^3}} \right)^5} = {\left[ {\left( {1 + x} \right) + {x^2}\left( {1 + x} \right)} \right]^5} = {\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\]
Áp dụng khai triển nhị thức Newton ta có:
\({\left( {1 + {x^2}} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{\left( {{x^2}} \right)^1} + C_5^2{.1^3}.{\left( {{x^2}} \right)^2} + C_5^3{.1^2}.{\left( {{x^2}} \right)^3} + C_5^4.1.{\left( {{x^2}} \right)^4} + C_5^5.{\left( {{x^2}} \right)^5}\)
\({\left( {1 + x} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{x^1} + C_5^2{.1^3}.{x^2} + C_5^3{.1^2}.{x^3} + C_5^4.1.{x^4} + C_5^5.{x^5}\)
Xét \[{\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\] = \({\left( {1 + {x^2}} \right)^5}\).\({\left( {1 + x} \right)^5}\) để có x5 thì (x2)i.xj = x5 hay x2i + j = x5 với i; j là số tự nhiên và i; j bé hơn 5.
i |
j |
0 |
5 |
1 |
3 |
2 |
1 |
Khi đó, số hạng chứa x5 trong khai triển là:
\(C_5^0{.1^5}.C_5^5{x^5} + C_5^1{.1^4}.{x^2}.C_5^3{.1^2}.{x^3} + C_5^2{.1^3}.{x^4}.C_5^1{.1^4}.x\) = x5 + 50x5 + 50x5 = 101x5
Vậy hệ số của x5 trong khai triển là 101.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có
\(3C_n^2 + 2A_n^2 = 3{n^2} - 5\)
\( \Leftrightarrow \frac{{3n!}}{{(n - 2)!2!}} + \frac{{2n!}}{{(n - 2)!}} = 3{n^2} - 5\)
\( \Leftrightarrow \frac{{3.n.(n - 1).(n - 2)!}}{{(n - 2)!.2}} + \frac{{2.n.(n - 1).(n - 2)!}}{{(n - 2)!}} = 3{n^2} - 5\)
\( \Leftrightarrow \frac{{3.n.(n - 1)}}{2} + 2.n.(n - 1) = 3{n^2} - 5\)
\( \Leftrightarrow 3{n^2} - 3n + 4{n^2} - 4n - 6{n^2} + 10 = 0\)
\( \Leftrightarrow {n^2} - 7n + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n = 2\end{array} \right.\). Mà n > 2 nên n = 5.
Khi đó:
\({\left( {2{x^3} - \frac{3}{{{x^2}}}} \right)^5} = {\left( {2{x^3} - 3{x^{ - 2}}} \right)^5}\)
\( = C_5^0.{\left( {2{x^3}} \right)^5} + C_5^1.{\left( {2{x^3}} \right)^4}.\left( { - 3{x^{ - 2}}} \right) + C_5^2.{\left( {2{x^3}} \right)^3}.{\left( { - 3{x^{ - 2}}} \right)^2}\)
\( + C_5^3.{\left( {2{x^3}} \right)^2}.{\left( { - 3{x^{ - 2}}} \right)^3} + C_5^4.{\left( {2{x^3}} \right)^1}.{\left( { - 3{x^{ - 2}}} \right)^4} + C_5^5.{\left( { - 3{x^{ - 2}}} \right)^5}\)
\( = {2^5}.{x^{15}} + {5.2^4}.{x^{12}}.( - 3).{x^{ - 2}} + {10.2^3}.{x^9}.{\left( { - 3} \right)^2}.{x^{ - 4}}\)
\( + {10.2^2}.{x^6}.{\left( { - 3} \right)^3}.{x^{ - 6}} + 5.2{x^3}.{\left( { - 3} \right)^4}.\left( {{x^{ - 8}}} \right) + {\left( { - 3} \right)^5}.\left( {{x^{ - 10}}} \right)\)
\( = 32.{x^{15}} - 240.{x^{10}} + 720.{x^5}\)\( - 1080 + 810{x^{ - 5}} - 243.{x^{ - 10}}\)
Vậy số hạng không chứa x trong khai triển là –1 080.
224 Đánh giá
50%
40%
0%
0%
0%