5 câu Trắc nghiệm Toán 10 Cánh diều Tọa độ của vectơ (Phần 2) có đáp án (Vận dụng)
29 người thi tuần này 4.6 1.9 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có \(\vec u = \vec v \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3 = 5m - 3\\2m = {m^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{m^2} - 5m + 6 = 0\\{m^2} - 2m = 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m = 3\\m = 2\end{array} \right.\\\left[ \begin{array}{l}m = 0\\m = 2\end{array} \right.\end{array} \right.\)
⇔ m = 2.
Suy ra m ∈ {2}.
Vậy ta chọn phương án A.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Gọi C(xC; yC).
Ta có: \(\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A}} \right) = \left( {3;9} \right)\) và \(\overrightarrow {BC} = \left( {{x_C} - {x_B};{y_C} - {y_B}} \right) = \left( {{x_C} - 7;{y_C} - 8} \right)\).
Ta có C là điểm đối xứng của A qua B.
Suy ra B là trung điểm của AC.
Do đó \(\overrightarrow {AB} = \overrightarrow {BC} \).
\( \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C} - 7\\9 = {y_C} - 8\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 10\\{y_C} = 17\end{array} \right.\)
Suy ra tọa độ C(10; 17).
Vậy ta chọn phương án D.
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Ta có:
⦁ O(0; 0). Suy ra \(\overrightarrow {OB} = \left( {2;4} \right)\);
⦁ Gọi M(xM; yM). Suy ra \(\overrightarrow {AM} = \left( {{x_M} - 1;{y_M} + 1} \right)\).
Ta có tứ giác OBMA là hình bình hành.
\( \Leftrightarrow \overrightarrow {AM} = \overrightarrow {OB} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} - 1 = 2\\{y_M} + 1 = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} = 3\\{y_M} = 3\end{array} \right.\)
Suy ra tọa độ M(3; 3).
Vậy ta chọn phương án C.
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: C

Gọi A(xA; yA), B(xB; yB), C(xC; yC).
Ta có: \(\overrightarrow {AD} = \left( {3 - {x_A};4 - {y_A}} \right)\) và \(\overrightarrow {DB} = \left( {{x_B} - 3;{y_B} - 4} \right)\).
Ta có D là trung điểm của AB.
Suy ra \(\overrightarrow {AD} = \overrightarrow {DB} \)
Khi đó \(\left\{ \begin{array}{l}3 - {x_A} = {x_B} - 3\\4 - {y_A} = {y_B} - 4\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}{x_A} + {x_B} = 6\,\,\,\,\left( 1 \right)\\{y_A} + {y_B} = 8\,\,\,\,\left( 2 \right)\end{array} \right.\)
Tương tự, ta được \(\left\{ \begin{array}{l}{x_B} + {x_C} = 12\,\,\,\,\left( 3 \right)\\{y_B} + {y_C} = 2\,\,\,\,\,\,\left( 4 \right)\end{array} \right.\) và \(\left\{ \begin{array}{l}{x_A} + {x_C} = 14\,\,\,\,\left( 5 \right)\\{y_A} + {y_C} = 6\,\,\,\,\,\,\left( 6 \right)\end{array} \right.\)
Từ (2), (4), (6), ta có hệ phương trình: \(\left\{ \begin{array}{l}{y_A} + {y_B} = 8\\{y_B} + {y_C} = 2\\{y_A} + {y_C} = 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{y_A} = 6\\{y_B} = 2\\{y_C} = 0\end{array} \right.\)
Vì vậy tổng tung độ ba đỉnh của tam giác ABC là: 6 + 2 + 0 = 8.
Do đó ta chọn phương án C.
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Gọi E(a; b) là trung điểm của AC.
Suy ra \(\overrightarrow {AE} = \overrightarrow {EC} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} - {x_A} = {x_C} - {x_E}\\{y_E} - {y_A} = {y_C} - {y_E}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} - 0 = - 6 - {x_E}\\{y_E} - \left( { - 1} \right) = 5 - {y_E}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2{x_E} = - 6\\2{y_E} = 4\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_E} = - 3\\{y_E} = 2\end{array} \right.\)
Suy ra E(–3; 2).
Gọi D(xD; yD).
Ta có AE = \(\frac{1}{2}AC\) = DB.
Ta có AE // DB (giả thiết) và AE = DB (chứng minh trên).
Suy ra \(\overrightarrow {DB} = \overrightarrow {AE} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_B} - {x_D} = {x_E} - {x_A}\\{y_B} - {y_D} = {y_E} - {y_A}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}1 - {x_D} = - 3 - 0\\4 - {y_D} = 2 - \left( { - 1} \right)\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 4\\{y_D} = 1\end{array} \right.\)
Suy ra D(4; 1).
Vậy ta chọn phương án B.