5 câu Trắc nghiệm Toán 10 Cánh diều Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Phần 2) có đáp án (Vận dụng)
16 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D
Ta có số trung bình cộng:
\(\begin{array}{l}\overline x = \frac{{11.1 + 16.1 + 17.1 + 19.1 + 20.1 + 21.1 + 22.1 + 23.2 + 24.1 + 25.1}}{{11}}\\ = 20,09\end{array}\)
Phương sai:
\(\begin{array}{l}{s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_n}{{\left( {{x_n} - \overline x } \right)}^2}}}{n}\\ = \frac{{1{{\left( {11 - 20,09} \right)}^2} + 1{{\left( {16 - 20,09} \right)}^2} + .... + 1{{\left( {25 - 20,09} \right)}^2}}}{{11}}\\ = 15,537\end{array}\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} = \sqrt {15,537} = 3,942\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A
Bảng số liệu trên có n = 13 + 45 + 126 + 125 + 110 + 40 + 12 = 471
Ta có số trung bình cộng:
\(\begin{array}{l}\overline x = \frac{{36.13 + 37.45 + 38.126 + 39.125 + 40.110 + 41.40 + 42.12}}{{471}}\\ = 38,939\end{array}\)
Phương sai:
\(\begin{array}{l}{s^2} = \frac{{{n_1}{{\left( {{x_1} - \overline x } \right)}^2} + {n_2}{{\left( {{x_2} - \overline x } \right)}^2} + ... + {n_n}{{\left( {{x_n} - \overline x } \right)}^2}}}{n}\theta \\ = \frac{{13{{\left( {36 - 38,939} \right)}^2} + 45{{\left( {37 - 38,939} \right)}^2} + .... + 12{{\left( {42 - 38,939} \right)}^2}}}{{11}}\\ = 0,481\end{array}\)
Độ lệch chuẩn: \(s = \sqrt {{s^2}} = \sqrt {0,481} = 0,694\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Mẫu số liệu có n = 11
Sắp xếp mẫu số liệu theo thứ tự không giảm ta có:
11; 16; 17; 19; 20; 21; 22; 23; 23; 24; 25
Các tứ phân vị là: Q2 = 21; Q1 = 17; Q3 = 23
Khoảng tứ phân vị là: ΔQ = Q3 – Q1 = 23 – 17 = 6 (tạ)
Ta có: \({Q_1} - \frac{3}{2}{\Delta _Q} = 17 - \frac{3}{2}.6 = 8\); \({Q_3} + \frac{3}{2}{\Delta _Q} = 23 + \frac{3}{2}.6 = 32\)
Vậy không có giá trị nào bất thường trong mẫu số liệu trên (do không có giá trị nào nhỏ hơn 8 hoặc lớn hơn 32).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C
Mẫu số liệu có n = 8
Sắp xếp mẫu số liệu theo thứ tự không giảm ta có:
6; 7; 8; 14; 23; 34; 65; 120
Các tứ phân vị là:
Q2 = (14 + 23) : 2 = 18,5; Q1 = (7 + 8) : 2 = 7,5; Q3 = (34 + 65) : 2 = 49,5
Khoảng tứ phân vị là: ΔQ = Q3 – Q1 = 49,5 – 7,5 = 42
Ta có: \({Q_1} - \frac{3}{2}{\Delta _Q} = 7,5 - \frac{3}{2}.42 = - 55,5\); \({Q_3} + \frac{3}{2}{\Delta _Q} = 49,5 + \frac{3}{2}.42 = 112,5\)
Vậy giá trị bất thường là 120 (do lớn hơn 112,5).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B
Xét mẫu số liệu của Lan:
\(\overline {{x_L}} = \frac{{7.2 + 8.1 + 9.1 + 10.1}}{5} = 8,2\)
\({s_L}^2 = \frac{{2.{{(7 - 8,2)}^2} + {{(8 - 8,2)}^2} + {{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 1,36\)
Xét mẫu số liệu của Hoa:
\(\overline {{x_H}} = \frac{{6.1 + 7.1 + 9.2 + 10.1}}{5} = 8,2\)
\({s_H}^2 = \frac{{{{(6 - 8,2)}^2} + {{(7 - 8,2)}^2} + 2{{(9 - 8,2)}^2} + {{(10 - 8,2)}^2}}}{5} = 2,16\)
Do \(\overline {{x_L}} = \overline {{x_H}} \) mà sH2 > sL2 nên bạn Lan có kết quả kiểm tra đồng đều hơn.
264 Đánh giá
50%
40%
0%
0%
0%