5 câu Trắc nghiệm Toán 10 Cánh diều Phương trình đường thẳng (Phần 2) có đáp án (Vận dụng)
29 người thi tuần này 4.6 1.6 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Ta có A ∈ AM.
Suy ra tọa độ A(1 + 3t; –2 – 7t).
Lại có A ∈ AH.
Suy ra 2(1 + 3t) + 5(–2 – 7t) + 66 = 0.
Do đó –29t + 58 = 0.
Vì vậy –29t = –58.
Khi đó t = 2.
Suy ra tọa độ A(7; –16).
Gọi I là trung điểm của cạnh AB.
Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{7 + 4}}{2} = \frac{{11}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 16 - 3}}{2} = - \frac{{19}}{2}\end{array} \right.\)
Khi đó tọa độ \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Đường trung trực d của cạnh AB đi qua điểm \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Suy ra phương trình d: \( - 3\left( {x - \frac{{11}}{2}} \right) + 13\left( {y + \frac{{19}}{2}} \right) = 0\).
⇔ 3x – 13y – 140 = 0.
Vậy ta chọn phương án B.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Chọn A(0; 1) ∈ ∆.
Đường thẳng ∆ có vectơ pháp tuyến \(\vec n = \left( {1;1} \right)\).
Suy ra đường thẳng ∆ nhận \(\vec u = \left( {1; - 1} \right)\) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua A(0; 1) và có vectơ chỉ phương \(\vec u = \left( {1; - 1} \right)\).
Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = t\\y = 1 - t\end{array} \right.\)
Ta có M ∈ ∆. Suy ra M(t; 1 – t).
Ta có \(\overrightarrow {NM} = \left( {t + 1; - 2 - t} \right)\).
Suy ra \(NM = \left| {\overrightarrow {NM} } \right| = \sqrt {{{\left( {t + 1} \right)}^2} + {{\left( { - 2 - t} \right)}^2}} \).
Theo đề, ta có MN = 5.
⇔ (t + 1)2 + (–2 – t)2 = 25.
⇔ t2 + 2t + 1 + 4 + 4t + t2 = 25.
⇔ 2t2 + 6t – 20 = 0.
⇔ t = 2 hoặc t = –5.
Với t = 2, ta có tọa độ M(2; –1).
Với t = –5, ta có tọa độ M(–5; 6).
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Thế tọa độ điểm M(4; 5) vào phương trình ∆, ta được: \(\left\{ \begin{array}{l}4 = 2 - 3t\\5 = 1 + 2t\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}t = - \frac{2}{3}\\t = 2\end{array} \right.\)
Suy ra M(4; 5) ∉ ∆.
Gọi H là hình chiếu của M lên ∆.
Ta có H ∈ ∆. Suy ra tọa độ H(2 – 3t; 1 + 2t).
Ta có \(\overrightarrow {MH} = \left( { - 2 - 3t; - 4 + 2t} \right)\).
Đường thẳng ∆ có vectơ chỉ phương \(\vec u = \left( { - 3;2} \right)\).
Ta có \(\overrightarrow {MH} \bot \vec u\).
Suy ra \(\overrightarrow {MH} .\vec u = 0\).
Khi đó (–2 – 3t).(–3) + (–4 + 2t).2 = 0.
Vì vậy 13t – 2 = 0.
Suy ra \(t = \frac{2}{{13}}\).
Do đó tọa độ \(H\left( {\frac{{20}}{{13}};\frac{{17}}{{13}}} \right)\).
Vậy hoành độ hình chiếu H của điểm M lên đường thẳng ∆ là: \(\frac{{20}}{{13}} \approx 1,538\).
Vậy ta chọn phương án D.
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có H ∈ d. Suy ra H(–5 + 2t; 9 – 5t).
Ta có:
⦁ \(\overrightarrow {HA} = \left( { - 2t + 3;5t - 8} \right)\);
⦁ \(\overrightarrow {HB} = \left( { - 2t + 8;5t - 4} \right)\). Suy ra \(2\overrightarrow {HB} = \left( { - 4t + 16;10t - 8} \right)\).
Suy ra \(\overrightarrow {HA} - 2\overrightarrow {HB} = \left( {2t - 13; - 5t} \right)\).
Ta có \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right| = \sqrt {{{\left( {2t - 13} \right)}^2} + {{\left( { - 5t} \right)}^2}} = \sqrt {29{t^2} - 52t + 169} \)
\( = \sqrt {29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right]} \)
Ta có \({\left( {t - \frac{{26}}{{29}}} \right)^2} \ge 0,\,\,\forall t \in \mathbb{R}\)
\( \Leftrightarrow {\left( {t - \frac{{26}}{{29}}} \right)^2} + \frac{{4225}}{{841}} \ge \frac{{4225}}{{841}},\,\,\forall t \in \mathbb{R}\)
\( \Leftrightarrow 29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right] \ge 29.\frac{{4225}}{{841}} = \frac{{4225}}{{29}},\,\,\forall t \in \mathbb{R}\)
\[ \Leftrightarrow \sqrt {29\left[ {{{\left( {t - \frac{{26}}{{29}}} \right)}^2} + \frac{{4225}}{{841}}} \right]} \ge \sqrt {\frac{{4225}}{{29}}} = \frac{{65\sqrt {29} }}{{29}},\,\,\forall t \in \mathbb{R}\].
Dấu “=” xảy ra \( \Leftrightarrow t = \frac{{26}}{{29}}\).
Với \(t = \frac{{26}}{{29}}\), ta có \(H\left( { - \frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\).
Khi đó \(\left| {\overrightarrow {HA} - 2\overrightarrow {HB} } \right|\) đạt giá trị nhỏ nhất bằng \[\frac{{65\sqrt {29} }}{{29}}\] khi \(H\left( { - \frac{{93}}{{29}};\frac{{131}}{{29}}} \right)\).
Vậy ta chọn phương án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Quan sát hình vẽ, ta thấy đường thẳng d đi qua hai điểm có tọa độ (0; 1) và (4; 5).
Suy ra phương trình d: \(\frac{{x - 0}}{{4 - 0}} = \frac{{y - 1}}{{5 - 1}}\)
\( \Leftrightarrow \frac{x}{4} = \frac{{y - 1}}{4}\)
⇔ x = y – 1
⇔ y = x – 1.
Ta có: 15 giờ ứng với x = 15.
Với x = 15, ta có y = 15 – 1 = 14 (lít nước).
Vậy sau 15 giờ, bể nước chứa 14 lít nước.
Do đó ta chọn phương án A.
