20 câu Trắc nghiệm Toán 11 Kết nối tri thức Bài tập cuối chương 9 có đáp án
42 người thi tuần này 4.6 253 lượt thi 20 câu hỏi 60 phút
🔥 Đề thi HOT:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
105 Bài tập trắc nghiệm Tổ hợp - Xác suất từ đề thi đại học có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
17 bài trắc nghiệm Lượng giác từ đề thi Đại học cực hay có lời giải chi tiết (P1)
45 Bài tập Đạo Hàm cực hay có lời giải chi tiết (P1)
14 Bài tập Giới hạn cực hay có lời giải chi tiết (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
A
Ta có y' = 7x6.
Câu 2
Lời giải
B
Ta có \(y' = \frac{{\left( {2x + 2} \right)\left( {x + 2} \right) - \left( {{x^2} + 2x - 3} \right)}}{{{{\left( {x + 2} \right)}^2}}}\)\( = \frac{{{x^2} + 4x + 7}}{{{{\left( {x + 2} \right)}^2}}}\).
Câu 3
Lời giải
C
Ta có y' = 3xln3.
Câu 4
Lời giải
A
Ta có \[y' = \tan x + x{\left( {\tan x} \right)^\prime } = \tan x + \frac{x}{{{{\cos }^2}x}}\].
Lời giải
A
Ta có \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 1
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Cho hàm số f(x) = x3 – 2x có đồ thị (C).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 2
Cho hàm số \(y = f\left( x \right) = \frac{1}{3}{x^3} - 3{x^2} + 7x + 2\) có đồ thị (C) và điểm A(0; 2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 3
Cho hàm số \(f\left( x \right) = \frac{{x - 3}}{{x + 4}}\); g(x) = xcos2x.
Câu 18
a) \(f'\left( 2 \right) + g'\left( 0 \right) = \frac{{16}}{9}\).
b) Hàm số f(x) có đạo hàm là \(f'\left( x \right) = \frac{1}{{{{\left( {x + 4} \right)}^2}}}\).
c) \(2{\left( {f'\left( x \right)} \right)^2} = \left( {f\left( x \right) - 1} \right)f''\left( x \right)\).
d) Hàm số g(x) có đạo hàm là g'(x) = cos2x + 2xsin2x.
a) \(f'\left( 2 \right) + g'\left( 0 \right) = \frac{{16}}{9}\).
b) Hàm số f(x) có đạo hàm là \(f'\left( x \right) = \frac{1}{{{{\left( {x + 4} \right)}^2}}}\).
c) \(2{\left( {f'\left( x \right)} \right)^2} = \left( {f\left( x \right) - 1} \right)f''\left( x \right)\).
d) Hàm số g(x) có đạo hàm là g'(x) = cos2x + 2xsin2x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 4
Một vật chuyển động trên đường thẳng được xác định bởi công thức s(t) = t3 – 3t2 + 7t – 2, trong đó t > 0 và tính bằng giây và s là quãng đường chuyển động được của vật trong t giây tính bằng mét. Khi đó:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đoạn văn 5
Cho hàm số f(x) = e2x.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.