5 câu Trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 1 có đáp án (Vận dụng)
20 người thi tuần này 4.6 2.3 K lượt thi 5 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có:
A = {x ∈ ℝ | |x – m| ≤ 25} ⟹ A = [m – 25; m + 25]
B = {x ∈ ℝ | |x| ≥ 2020} ⟹ B = (-∞; -2020] ∪ [2020; +∞)
Để A ∩ B = ∅ thì -2020 < m – 25 và m + 25 < 2020 (1)
Khi đó (1) ⟺ ⟹ -1995 < m < 1995.
Vậy có 3989 giá trị nguyên m thỏa mãn.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình |x2 – 2x – 3| = x2 + |2x + 3| (1).
+ Nếu x ≥ thì ta có:
(1) ⟺ |x2 – 2x – 3| = x2 + |2x + 3| ⇔ .Mà x ∈ ℤ và x ∈ [-2020; 2021] nên x = 0 thỏa mãn.
+ Nếu x < thì ta có (1) ⟺ |x2 – 2x – 3| = x2 – 2x – 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:
(1) ⇔
Mà x ∈ [-2020;2021] nên x ∈ {-2; -3; …; -2020}.
Do đó tập nghiệm của phương trình là S = {0; -2; -3; …; -2020}.
Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.
Lời giải
Hướng dẫn giải
Đáp án đúng là: D

Gọi a, b, c theo thứ tự là số học sinh chỉ thi môn điền kinh, nhảy xa, nhảy cao.
x là số học sinh chỉ thi hai môn điền kinh và nhảy xa.
y là số học sinh chỉ thi hai môn nhảy xa và nhảy cao.
z là số học sinh chỉ thi hai môn điền kinh và nhảy cao.
Số em thi ít nhất một môn là: 45 – 7 = 38
Dựa vào biểu đồ ven ta có hệ phương trình sau:
Cộng vế với vế của (1), (2), (3) ta có: a + b + c + 2(x + y + z) + 15 = 60 (5)
Từ (4) và (5) ta có: a + b + c + 2(38 – 5 – a – b – c) + 15 = 60
⟺ a + b + c = 21.
Vậy có 21 học sinh chỉ thi một trong ba nội dung trên.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Vì P, Q là hai tập hợp khác rỗng nên ta có điều kiện:
-3 < m ≤
Để P\Q = ∅ ⟺ P ⊂ Q
⟺ m ≥ 3
Kết hợp với điều kiện ta có 3 ≤ m ≤ .
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có:
+ Với n = 1 ⇒ n(n + 1) = 2 không phải là số chính phương ⇒ A sai.
+ Với n = 1 ⇒ n(n + 1) = 2 là số chẵn ⇒ B sai.
Đặt P = n(n + 1)(n + 2)
TH1: n chẵn ⇒ P chẵn
TH2: n lẻ ⇒ (n + 1) chẵn ⇒ P chẵn
Vậy P chẵn ∀n ∈ ℕ ⇒ C sai.
Ta có một số chia hết cho 6 khi và chỉ khi số đó chia hết cho cả 2 và 3.
⟹ P ⋮ 6 ⟺
(*) Ở trên ta đã chứng minh P luôn chẵn ⇒ P ⋮ 2
(**) P ⋮ 3
TH1: n ⋮ 3 ⇒ P ⋮ 3
TH2: n chia 3 dư 1 ⇒ (n + 2) ⋮ 3 ⇒ P ⋮ 3
TH3: n chia 3 dư 2 ⇒ (n + 1) ⋮ 3 ⇒ P ⋮ 3
Vậy P ⋮ 3, ∀n ∈ ℕ.
⇒ P ⋮ 6.
Do đó mệnh đề ở câu D đúng.