13 Bài tập Cách xét tính đồng biến, nghịch biến của hàm số (có lời giải)
88 người thi tuần này 4.6 802 lượt thi 13 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Xét hàm số y = x2 trên khoảng (–∞; 0).
Lấy x1, x2 tùy ý sao cho x1 < x2, ta có: f(x1) – f(x2) = x12 – x22 = (x1 – x2)(x1 + x2)
Do x1 < x2 nên x1 – x2 < 0 và do x1, x2 thuộc (–∞; 0) nên x1 + x2 < 0.
Từ đó suy ra: f(x1) – f(x2) > 0 hay f(x1) > f(x2)
Do đó, khi x1 < x2 thì f(x1) > f(x2)
Vậy hàm số nghịch biến (giảm) trên khoảng (–∞; 0).
Lời giải
Hướng dẫn giải:
Xét hàm số có đồ thị như hình trên, từ đồ thị ta thấy hàm số xác định trên [– 3; 7]. Ta có:
+ Trên khoảng (–3; –2), đồ thị hàm số có dạng đi lên từ trái sang phải. Do đó, hàm số đồng biến trên khoảng (–3; –2).
+ Trên khoảng (–2; 5), đồ thị hàm số có dạng đi xuống từ trái sang phải. Do đó, hàm số nghịch biến trên khoảng (–2; 5).
+ Trên khoảng (5; 7), đồ thị hàm số có dạng đi lên từ trái sang phải. Do đó, hàm số đồng biến trên khoảng (5; 7).
Câu 3
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Xét hàm số f(x) = 4 – 3x có tập xác định D = ℝ.
Cho x1, x2 tùy ý thuộc D sao cho x1 > x2 ta có: f(x1) – f(x2) = (4 – 3x1) – (4 – 3x2) = 3x2 – 3x1 = 3(x2 – x1)
Ta có: x1 > x2 ⇒ x2 – x1 < 0 ⇒ f(x1) – f(x2) < 0 ⇒ f(x1) < f(x2)
Do đó, khi x1 > x2 thì f(x1) < f(x2).
Vậy hàm số nghịch biến trên ℝ. Do đó, hàm số ngịch biến trên (43; +∞).
Câu 4
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Xét hàm số f(x) = 4x + 5
Chọn x1, x2 tùy ý thuộc (–∞; 2) sao cho x1 > x2 ta có: f(x1) – f(x2) = (4x1 + 5) – (4x2 + 5) = 4x1 – 4x2 = 4(x1 – x2)
Ta có: x1 > x2 ⇒ x1 – x2 > 0 ⇒ f(x1) – f(x2) > 0 ⇒ f(x1) > f(x2)
Do đó, hàm số f(x) = 4x + 5 đồng biến trên khoảng (–∞; 2).
Chọn x1, x2 tùy ý thuộc (2; +∞) sao cho x1 > x2 ta có: f(x1) – f(x2) = (4x1 + 5) – (4x2 + 5) = 4x1 – 4x2 = 4(x1 – x2)
Ta có: x1 > x2 ⇒ x1 – x2 > 0 ⇒ f(x1) – f(x2) > 0 ⇒ f(x1) > f(x2)
Do đó, hàm số f(x) = 4x + 5 đồng biến trên khoảng (2; +∞).
Câu 5
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Xét hàm số f(x) = 3x
Chọn x1, x2 tùy ý thuộc (0; +∞) sao cho x1 > x2 ta có: f(x1) – f(x2) = 3x1 – 3x2 = 3(x1 – x2)
Ta có: x1 > x2 ⇒ x1 – x2 > 0 ⇒ f(x1) – f(x2) > 0 ⇒ f(x1) > f(x2)
Do đó, hàm số f(x) = 3x đồng biến trên khoảng (0; +∞).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
D. Hàm số nghịch biến trên khoảng (3; +∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


