15 câu Trắc nghiệm Toán 10 Kết nối tri thức Bài 8. Tổng và hiệu của hai vectơ có đáp án
61 người thi tuần này 4.6 2.2 K lượt thi 15 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Số trung bình cộng, số trung vị. Mốt. Phương sai và độ lệch chuẩn
25 câu Trắc nghiệm cuối năm Đại số và giả tích 10 có đáp án
15 câu Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Thông hiểu)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \);
B. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {AC} \);
C. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
D. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \).
Lời giải
Đáp án D
Quy tắc ba điểm được phát biểu như sau: Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \).
Câu 2
A. \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow {AB} \);
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \);
C. \(\overrightarrow {IA} = - \overrightarrow {IB} \);
D. \(\overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BC} \).
Lời giải
Đáp án A
Xét tam giác ABC, có:
\(\overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BC} \) (quy tắc ba điểm). Do đó D đúng.
Vì G là trọng tâm tam giác nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \). Do đó B đúng.
Ta có I là trung điểm của AB nên \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow 0 \) hay \(\overrightarrow {IA} = - \overrightarrow {IB} \). Do đó A sai và C đúng.
Câu 3
A. 5cm;
B. 10dm;
C. 10cm;
D. 15cm.
Lời giải
Đáp án đúng là C
Xét tam giác ABC vuông cân tại A có AH là đường cao nên AH là đường trung tuyến suy ra H là trung điểm của BC.
Gọi D là điểm đối xứng với A qua H.

Xét tứ giác ABDC có AD cắt BC tại H là trung điểm của mỗi đường. Do đó ABDC là hình bình hành.
⇒ \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \) (quy tắc hình bình hành)
⇒ \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right|\)
Ta lại có hình bình hành ABDC có \(\widehat {BAC} = {90^0}\) nên ABDC là hình chữ nhật do đó AD = BC =10 cm.
⇒ \(\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AD} } \right| = AD = BC = 10cm\).
Vậy độ dài \(\overrightarrow {AB} + \overrightarrow {AC} \) là 10 cm.
Câu 4
A. Mọi vectơ khác vectơ - không;
B. Không có vectơ nào ;
C. Chính nó;
D. Mọi vectơ kể cả vectơ – không.
Lời giải
Đáp án đúng là C
Vectơ \(\overrightarrow 0 \) được coi là vectơ đối của chính nó.
Câu 5
A. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OC} - \overrightarrow {OD} \);
B. \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \);
C. \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {OC} - \overrightarrow {OB} \);
D. \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OB} \).
Lời giải
Đáp án đúng là B

+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \):
\(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {AB} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \);
Vì ABCD là hình bình hành nên AB = CD và AB // CD khi đó \(\overrightarrow {AB} = \overrightarrow {DC} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OB} \ne \overrightarrow {OC} - \overrightarrow {OD} \) và \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \). Do đó B đúng, A sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {DA} \) và \(\overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {BC} \):
Vì ABCD là hình bình hành nên AD = CB và AD // CB khi đó \(\overrightarrow {DA} = \overrightarrow {CB} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OD} \ne \overrightarrow {OC} - \overrightarrow {OB} \). Do đó C sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {CA} \) và \(\overrightarrow {OD} - \overrightarrow {OB} = \overrightarrow {BD} \):
Vì hai vectơ \(\overrightarrow {CA} \) và \(\overrightarrow {BD} \) không cùng phương nên không bằng nhau. Suy ra\(\overrightarrow {OA} - \overrightarrow {OC} \ne \overrightarrow {OD} - \overrightarrow {OB} \). Do đó D sai.
Câu 6
A. 9,39 dm;
B. 3,06 dm;
C. 7,31 dm;
D. 2,70 dm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);
B. \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \);
C. \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \);
D. \(\overrightarrow {GC} + \overrightarrow {GO} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(\overrightarrow {PR} \);
B. \(\overrightarrow {MR} \);
C. \(\overrightarrow {MP} \);
D. \(\overrightarrow {MN} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. M là một điểm bất kì;
B. M là điểm thỏa mãn ACMD là hình bình hành;
C. M là điểm thỏa mãn ACDM là hình bình hành;
D. Không tồn tại điểm M.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. M là trung điểm của đoạn thẳng NP;
B. N là trung điểm của đoạn thẳng MP;
C. P là trung điểm của đoạn thẳng MN;
D. Cả A, B, C đều sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. 10N;
B. 4N;
C. 5,32N;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A. (900; 1 000);
B. (1 000; 1 100);
C. (1 100; 1 200);
D. (1 200; 1 300).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A. \(\left| {\overrightarrow a } \right| = 2\left| {\overrightarrow b } \right|\);
B. \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\);
C. \(\left| {\overrightarrow a } \right| = \sqrt 2 \left| {\overrightarrow b } \right|\);
D. \(\left| {\overrightarrow a } \right| = \frac{1}{{\sqrt 2 }}\left| {\overrightarrow b } \right|\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A. \[\frac{{\sqrt 2 a}}{2}\];
B. \[\sqrt 2 \]a;
C. \[\frac{{\sqrt 2 a}}{3}\];
D. a
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

