12 Bài tập Chứng minh đẳng thức lượng giác (có lời giải)
60 người thi tuần này 4.6 508 lượt thi 12 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Cách 1. Ta có \({\cos ^4}\alpha = {\left( {{{\cos }^2}\alpha } \right)^2} = {\left( {1 - {{\sin }^2}\alpha } \right)^2} = 1 - 2{\sin ^2}\alpha + {\sin ^4}\alpha \)
Do đó: sin4 α − cos4 α = sin4 α – (1 – 2sin2 α + sin4 α) = 2 sin2 α − 1.
Vậy ta được điều phải chứng minh.
Cách 2. Ta có sin4 α − sin4 α = (sin2 α + cos2 α)( sin2 α − cos2 α)
= 1. [sin2 α – (1 − sin2 α)] = 2 sin2 α − 1.
Vậy sin4 α − cos4 α = 2 sin2 α − 1.
Cách 3. Ta sử dụng phép biến đổi tương đương
sin4 α − cos4 α = 2 sin2 α − 1
⇔ sin4 α − 2 sin2 α + 1 − cos4 α = 0
⇔ (1 − sin2 α)2 − cos4 α = 0
⇔ cos4 α − cos4 α = 0 (luôn đúng).
Vậy đẳng thức được chứng minh.
Lời giải
Hướng dẫn giải:
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có \(\widehat A\)+ \(\widehat B\)+ \(\widehat C\) = 180°.
Suy ra: 180° −\(\widehat A\)= \(\widehat B\)+ \(\widehat C\).
Do đó: cos(180° – A) = cos(B + C).
Lại có: cos(180° – A) = – cosA (quan hệ giữa hai góc bù nhau).
Khi đó ta có: – cosA = cos(B + C) ⇔ cosA = – cos(B + C).
Vậy đẳng thức được chứng minh.
Câu 3
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Từ hệ thức cos2 α + sin2 α = 1, ta suy ra được:
\[{\cos ^2}\frac{\alpha }{2} + {\sin ^2}\frac{\alpha }{2} = 1\]; \[{\cos ^2}\frac{\alpha }{3} + {\sin ^2}\frac{\alpha }{3} = 1\]; \[{\cos ^2}\frac{\alpha }{4} + {\sin ^2}\frac{\alpha }{4} = 1\]; \[{\cos ^2}\frac{\alpha }{5} + {\sin ^2}\frac{\alpha }{5} = 1\].
Suy ra: \[5\left( {{{\cos }^2}\frac{\alpha }{5} + {{\sin }^2}\frac{\alpha }{5}} \right) = 5.1 = 5\].
Câu 4
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Tam giác ABC có: \(\widehat A\)+ \(\widehat B\)+ \(\widehat C\) = 180° (định lí tổng ba góc trong tam giác).
Suy ra: 180° −\(\widehat A\)= \(\widehat B\)+ \(\widehat C\) và
Do đó sin A = sin (180° − A) = sin (B + C), suy ra khẳng định A đúng.
Lại có \(\frac{{\widehat A + \widehat B + \widehat C}}{2} = \frac{{180^\circ }}{2} = 90^\circ \) \( \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = 90^\circ \)
Do đó:\(\cos \frac{A}{2} = \sin \frac{{B + C}}{2}\) (hai góc phụ nhau), suy ra khẳng định C đúng.
Mặt khác tan A = − tan (180° −\(\widehat A\)) = − tan (B + C), suy ra khẳng định D đúng và B sai.
Câu 5
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Do 0° < x < 90° nên tanx > 0 và cotx > 0.
Ta có tanx . cotx = 1, suy ra cotx = \(\frac{1}{{tanx}}\).
Khi đó: \(\frac{{1 + \cot x}}{{1 - \cot x}}\) = \(\frac{{1 + \frac{1}{{\tan x}}}}{{1 - \frac{1}{{\tan x}}}} = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x - 1}}{{\tan x}}}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
Vậy \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.