10 Bài tập Ứng dụng hệ bất phương trình bậc nhất hai ẩn để giải bài toán kinh tế (có lời giải)

33 người thi tuần này 4.6 382 lượt thi 10 câu hỏi 45 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Đáp án đúng là: A

Gọi x (x ≥ 0 (1)) là số kg loại I cần sản xuất, y (y ≥ 0 (2)) là số kg loại II cần sản xuất.

Số nguyên liệu cần dùng để sản xuất x sản phẩm loại I là: 2x

Số nguyên liệu cần dùng để sản xuất y sản phẩm loại II là: 4y

Xưởng có 200 kg nguyên liệu nên ta có: 2x + 4y ≤ 200 x + 2y ≤ 100 x + 2y – 100 ≤ 0 (3)

Thời gian để sản xuất x sản phẩm loại I là: 30x

Thời gian để sản xuất y sản phẩm loại II là: 15y

Xưởng có 1 200 giờ làm việc nên ta có: 30x + 15y ≤ 1200 hay 2x + y – 80 ≤ 0 (4)

Xét bất phương trình (1) và điểm A(1; 2) có:

Điểm A không nằm trên đường thẳng x = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng có kể bờ x = 0 và chứa điểm A(1; 2).

Xét bất phương trình (2) và điểm B(0; 1) có:

Điểm B không nằm trên đường thẳng y = 0 và 1 ≥ 0, do đó, miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng có kể bờ y = 0 và chứa điểm B(0; 1)

Xét bất phương trình (3) và điểm (0; 0) ta có:

Điểm (0; 0) không nằm trên đường thẳng x + 2y – 100 = 0 và 0 + 2.0 – 100 = –100 < 0 nên miền nghiệm của bất phương trình (3) là nửa mặt phẳng có kể bờ x + 2y – 100 = 0 và chứa điểm (0; 0).

Xét bất phương trình (4) và điểm (0; 0) ta có:

Điểm (0; 0) không nằm trên đường thẳng 2x + y – 80 = 0 và 2.0 + 0 – 80 = –80 < 0 nên miền nghiệm của bất phương trình (4) là nửa mặt phẳng có kể bờ 2x + y – 80 = 0 và chứa điểm (0; 0)

Kết hợp miền nghiệm của các bất phương trình (1), (2), (3) và (4) là miền nghiệm thỏa mãn màu trắng trong hình vẽ:

Một xưởng sản xuất hai loại sản phẩm, mỗi kg sản phẩm loại I (ảnh 1)

Lợi nhuận thu lại từ x sản phẩm loại I là: 40 000x

Lợi nhuận thu lại từ y sản phẩm loại II là: 30 000y

Tổng lợi nhuận là: 40 000x + 30 000y

Giá trị lớn nhất của L(x; y) = 40 000x + 30 000y đạt tại một trong các điểm (0; 0), (40; 0), (0; 50), (20; 40).

Ta có:

L(0; 0) = 0

L(40; 0) = 1 600 000

L(0; 50) = 1 500 000

L(20; 40) = 2 000 000

Vậy giá trị lớn nhất của L(x; y) là 2 000 000 khi (x; y) = (20; 40).

Vậy cần sản xuất 20kg sản phẩm loại I và 40kg sản phẩm loại II để có mức lợi nhuận lớn nhất

Lời giải

Đáp án đúng là: B

Gọi x, y lần lượt là số lít nước cam và táo của một đội pha chế (x, y ≥ 0).

Số điểm thưởng của đội chơi này là: Đ(x; y) = 60x + 80y

Số gam đường cần dùng là 30x + 10y.

Số lít nước cần dùng là x + y.

Số gam hương liệu cần dùng là x + 4y.

Vì trong cuộc thi pha chế, mỗi đội chơi sử dụng tối đa 24g hương liệu, 9 lít nước và 210 g đường nên ta có hệ bất phương trình 30x+10y210x+y9x+4y24x0y03x+y210x+y90x+4y240x0y0

Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 (ảnh 1)

Miền nghiệm của hệ trên là ngũ giác OABCD (kể cả biên). Ta có: Đ(x; y) = 60x + 80y sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ đã cho khi (x; y) là tọa độ của một trong các đỉnh O(0; 0), A(7; 0), B(6; 3), C(4; 5), D(0; 6).

Ta có:

Đ(0; 0) = 60.0 + 80.0 = 0

Đ(7; 0) = 60.7 + 80.0 = 420

Đ(6; 3) = 60.6 + 80.3 = 600

Đ(4; 5) = 60.4 + 80.5 = 640

Đ(0; 6) = 60.0 + 80.6 = 480

Vậy giá trị lớn nhất của D(x; y) là 640 hay để được số điểm thưởng lớn nhất thì cần pha chế 4 lít nước cam và 5 lít nước táo.

Lời giải

Đáp án đúng là: A

Gọi số bánh chưng gói được là x, số bánh ống gói được là y. (x, y ≥ 0)

Khi đó số điểm thưởng là F(x; y) = 5x + 7y

Số kg gạo nếp cần dùng là 0,4x + 0,6y

Số kg thịt cần dùng là 0,05x + 0,075y

Số kg đậu xanh cần dùng là 0,1x + 0,15y

Vì trong cuộc thi này chỉ được sử dụng tối đa 20kg gạo nếp, 2kg thịt ba chỉ và 5kg đậu xanh nên ta có hệ bất phương trình

0,4x+0,6y200,05x+0,075y20,1x+0,15y5x0y02x+3y1002x+3y802x+3y100x0y02x+3y80x0y0

Miền nghiệm của hệ bất phương trình là tam giác OAB (kể cả biên)

Trong cuộc thi gói bánh vào dịp năm mới, mỗi đội chơi được (ảnh 1)

F(x; y) sẽ đạt giá trị lớn nhất trên miền nghiệm của hệ bất phương trình trên khi (x; y) là tọa độ một trong các đỉnh O(0; 0), A0;803, B(40; 0) (loại điểm A vì số bánh phải là số nguyên).

Ta có:

F(0; 0) = 5.0 + 7.0 = 0

F(40; 0) = 5.40 + 7.0 = 200

Do đó, F(x; y) lớn nhất là 200. Vậy cần phải gói 40 cái bánh chưng để nhận được số điểm thưởng là lớn nhất.

Lời giải

Đáp án đúng là: D

Gọi x và y lần lượt là số kg thịt bò và thịt lợn mà gia đình đó mua mỗi ngày (0 ≤ x ≤ 1,6; 0 ≤ y ≤ 1,1)

Khi đó, chi phí để mua số thịt là: F(x; y) = 45x + 35y.

Trong x kg thịt bò có 800x đơn vị protein và 200x đơn vị lipit.

Trong y kg thịt lợn có 600y đơn vị protein và 400y đơn vị lipit.

Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày nên ta có hệ bất phương trình: 

800x+600y900200x+400y400x1,6x0y1,1y08x+6y9x+2y2x1,6x0y1,1y0

Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit (ảnh 1)

Miền nghiệm của hệ bất phương trình trên là miền tứ giác không bị gạch chéo trong hình vẽ (kể cả biên).

Ta có:

F(1,6; 1,1) = 45.1,6 + 35.1,1 = 110,5

F(1,6; 0,2) = 45.1,6 + 35.0,2 = 79

F(0,6; 0,7) = 45.0,6 + 35.0,7 = 51,5

F(0,3; 1,1) = 45.0,3 + 35.1,1 = 52

Vậy F(x; y) nhỏ nhất là 51,5 hay gia đình này cần phải mua 0,6 kg thịt bò và 0,7 kg thịt lợn để số tiền bỏ ra là ít nhất.

Lời giải

Đáp án đúng là: B

Gọi x và y lần lượt là số ha cà phê và ca cao mà hộ nông dân này trồng (x ≥ 0, y ≥ 0).

Số tiền cần bỏ ra để thuê người trồng ca cao là 30y.100 000 = 3 000 000y (đồng).

Lợi nhuận thu được là: F(x; y) = 10 000 000x + 12 000 000 – 3 000 000y = 10 000 000x + 9 000 000 y.

Vì số công để trồng cà phê không vượt quá 80 công và gia đình chỉ có 10 ha đất nên ta có hệ phương trình:

x+y1020x80x0y0x+y10x4x0y0

Miền nghiệm của hệ trên là miền tứ giác không bị gạch chéo trong hình vẽ (kể cả biên). F(x; y) đạt giá trị lớn nhất khi (x; y) là tọa độ của một trong các đỉnh tứ giác.

Một gia đình định trồng cà phê và ca cao trên diện tích 10 ha. (ảnh 1)

Ta có:

F(0; 0) = 0

F(4; 0) = 40 000 000

F(4; 6) = 94 000 000

F(0; 10) = 90 000 000

Vậy F(x; y) lớn nhất khi (x; y) = (4; 6) hay cần phải trồng 4 ha cà phê và 6 ha ca cao để thu về lợi nhuận lớn nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

76 Đánh giá

50%

40%

0%

0%

0%