12 Bài tập Tìm công thức của hàm số bậc hai khi biết đồ thị hàm số (có lời giải)
48 người thi tuần này 4.6 573 lượt thi 12 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh S(1; 1) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( - \frac{b}{{2a}} = 1\) (2); \( - \frac{\Delta }{{4a}} = 1 \Leftrightarrow - \frac{{{b^2} - 4ac}}{{4a}} = 1\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: \( - \frac{{{b^2} - 4a.2}}{{4a}} = 1 \Leftrightarrow - {b^2} + 8a = 4a \Leftrightarrow - {b^2} + 4a = 0\) (5)
Từ (2) ta có: b = –2a (6)
Thay (6) vào (5) ta có: –(–2a)2 + 4a = 0 ⇔ –4a2 + 4a = 0
⇔ 4a(–a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1 ta có: b = –2.1 = –2
Vậy hàm số cần tìm là: y = x2 – 2x + 2.
Lời giải
Hướng dẫn giải:
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(2; –2) và cắt trục tung tại điểm (0; 2).
Do đó ta có:
a > 0 (1)
\( - \frac{b}{{2a}} = 2\) (2); \( - \frac{\Delta }{{4a}} = - 2 \Leftrightarrow - \frac{{{b^2} - 4ac}}{{4a}} = - 2\) (3)
c = 2 (4)
Thay (4) vào (3) ta có: \( - \frac{{{b^2} - 4a.2}}{{4a}} = - 2 \Leftrightarrow - {b^2} + 8a = - 8a \Leftrightarrow - {b^2} + 16a = 0\) (5)
Từ (2) ta có: b = –4a (6)
Thay (6) vào (5) ta có: –(–4a)2 + 16a = 0 ⇔ –16a2 + 16a = 0
⇔ 16a(–a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1, ta có: b = –4.1 = –4
Do đó, hàm số cần tìm là: y = x2 – 4x + 2.
Câu 3
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Hàm số bậc hai có dạng y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng xuống, đỉnh I(2; 0) và cắt trục tung tại điểm (0; – 4).
Do đó ta có:
a < 0 (1)
\( - \frac{b}{{2a}} = 2\) (2); \( - \frac{\Delta }{{4a}} = 0 \Leftrightarrow - \frac{{{b^2} - 4ac}}{{4a}} = 0 \Leftrightarrow {b^2} - 4ac = 0\) (3)
c = – 4 (4)
Thay (4) vào (3) ta có: \({b^2} - 4a.( - 4) = 0 \Leftrightarrow {b^2} + 16a = 0\) (5)
Từ (2) ta có: b = –4a (6)
Thay (6) vào (5) ta có: (–4a)2 + 16a = 0 ⇔ 16a2 + 16a = 0
⇔ 16a(a + 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = - 1\,\,(TM)\end{array} \right.\)
Với a = –1 ta có: b = – 4.(– 1) = 4
Vậy hàm số y = ax2 + bx + c là y = –x2 + 4x – 4.
Câu 4
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Gọi dạng của parabol trên là y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(0; –3) và cắt trục tung tại điểm (0; –3).
Do đó ta có:
a > 0
\( - \frac{b}{{2a}} = 0\) ⇒ b = 0
c = –3
Dựa vào đồ thị ta còn thấy, đồ thị hàm số đi qua điểm (2; 1) do đó ta có:
Tại x = 2 thì y = a.22 + b.2 + c = 1
Hay 4a + 2b + c = 1
Mà b = 0, c = –3
⇒ 4a – 3 = 1
⇒ 4a = 4
⇒ a = 1 (TM)
Vậy hàm số y = ax2 + bx + c là y = x2 – 3.
Câu 5
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Hàm số bậc hai có dạng y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(1; –2) và cắt trục tung tại điểm (0; –1).
Do đó ta có:
a > 0 (1)
\( - \frac{b}{{2a}} = 1\) (2); \( - \frac{\Delta }{{4a}} = - 2 \Leftrightarrow \frac{{{b^2} - 4ac}}{{4a}} = 2 \Leftrightarrow {b^2} - 4ac = 8a\) (3)
c = –1 (4)
Thay (4) vào (3) ta có: b2 – 4a.(–1) = 8a ⇔ b2 – 4a = 0 (5)
Từ (2) ta có: b = –2a (6)
Thay (6) vào (5) ta có: (–2a)2 – 4a = 0 ⇔ 4a2 – 4a = 0 ⇔ 4a(a – 1) = 0 ⇔ \(\left[ \begin{array}{l}a = 0\,\,(L)\\a = 1\,\,(TM)\end{array} \right.\)
Với a = 1 ta có: b = –2.1 = –2
Vậy hàm số y = ax2 + bx + c là y = x2 – 2x – 1.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.








