15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hàm số có đáp án
40 người thi tuần này 4.6 3.2 K lượt thi 15 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
Đề kiểm tra Tổng và hiệu của hai vectơ (có lời giải) - Đề 1
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
20 câu Trắc nghiệm Toán 10 Chân trời sáng tạo Bài 3. Giải tam giác và ứng dụng thực tế (Đúng-sai, trả lời ngắn) có đáp án
112 câu Trắc nghiệm Toán 10 Bài 3: Tích của vecto với một số có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(\left( { - \infty ; - 1} \right) \cup \left( {4; + \infty } \right)\);
B. [- 1; 4];
C. (- 1; 4);
D. \(\left( { - \infty ; - 1} \right] \cup \left[ {4; + \infty } \right)\).
Lời giải
Đáp án đúng là: D
Hàm số xác định khi x2 – 3x – 4 ≥ 0\( \Leftrightarrow \left[ \begin{array}{l}x \le - 1\\x \ge 4\end{array} \right.\).
Vậy tập xác định của hàm số là D = \(\left( { - \infty ; - 1} \right] \cup \left[ {4; + \infty } \right)\).
Đáp án đúng là: D
Câu 2
A. D = ℝ;
B. D = (1; + ∞);
C. D = ℝ\{1};
D. D = [1; + ∞).
Lời giải
Đáp án đúng là: C
Hàm số xác định khi 2x – 2 ≠ 0 ⟺ x ≠ 1.
Vậy tập xác định của hàm số là D = ℝ\{1}.
Câu 3
A. Hàm số đồng biến trên \(\left( { - \infty ;\frac{4}{3}} \right)\);
B. Hàm số nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\);
C. Hàm số đồng biến trên ℝ;
D. Hàm số đồng biến trên \(\left( {\frac{3}{4}; + \infty } \right)\).
Lời giải
Đáp án đúng là: B
TXĐ: D = ℝ.
Với mọi x1; x2 ∈ ℝ và x1 < x2, ta có
f(x1) – f(x2) = (4 – 3x1) – (4 – 3x2) = – 3(x1 – x2) > 0
Suy ra f(x1) > f(x2).
Do đó, hàm số nghịch biến trên ℝ.
Mà \(\left( {\frac{4}{3}; + \infty } \right) \subset \mathbb{R}\) nên hàm số cũng nghịch biến trên \(\left( {\frac{4}{3}; + \infty } \right)\).
Câu 4
A. M(2; 3);
B. N(0; – 1);
C. P(12; – 12);
D. Q(- 1; 0).
Lời giải
Đáp án đúng là: B
Đáp án A: M(2; 3) xét y(2) = \(\frac{{2 - 1}}{{{{2.2}^2} - 3.2 + 1}} = \frac{1}{3}\) ≠ 3 nên M không thuộc đồ thị hàm số.
Đáp án B: N(0; – 1) xét y(0) = \(\frac{{0 - 1}}{{{{2.0}^2} - 3.0 + 1}} = - 1\) nên N thuộc đồ thị hàm số.
Đáp án C: P(12; – 12) xét y(12) = \(\frac{{12 - 1}}{{{{2.12}^2} - 3.12 + 1}} = \frac{1}{{23}}\) ≠ – 12 nên P không thuộc đồ thị hàm số.
Đáp án D: Q(-1; 0) xét y(1) = \(\frac{{ - 1 - 1}}{{2.{{( - 1)}^2} - 3.( - 1) + 1}} = - \frac{1}{3}\) ≠ 0 nên Q không thuộc đồ thị hàm số.
Câu 5
A. D = ℝ\{5};
B. D = (– ∞; 5);
C. D = (– ∞; 5];
D. D = (5; + ∞).
Lời giải
Đáp án đúng là: B
Điều kiện xác định của biểu thức \[\frac{2}{{\sqrt {5 - x} }}\] là 5 – x > 0 \[ \Leftrightarrow \]x < 5.
Vậy tập xác định của hàm số là: D = (– ∞; 5).
Câu 6
A. f(1) = 0;
B. f(2) = 0;
C. f(– 2) = – 60;
D. f(– 4) = – 24.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \(\left[ {\frac{1}{2};\frac{2}{3}} \right)\);
B. \(\left[ {\frac{1}{2};\frac{3}{2}} \right)\);
C. \(\left( {\frac{2}{3}; + \infty } \right)\);
D. \(\left[ {\frac{1}{2}; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. Hàm số nghịch biến trên (– ∞; 2), đồng biến trên (2; + ∞);
B. Hàm số đồng biến trên (– ∞; 2), nghịch biến trên (2; + ∞);
C. Hàm số nghịch biến trên các khoảng (– ∞; 2) và (2; + ∞);
D. Hàm số đồng biến trên các khoảng (– ∞; 2) và (2; + ∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. Hàm số đồng biến trên khoảng (0; + ∞).
B. Hàm số nghịch biến trên khoảng (0; + ∞).
C. Hàm số vừa đồng biến, vừa nghịch biến trên khoảng (0; + ∞).
D. Hàm số không đồng biến, cũng không nghịch biến trên khoảng (0; + ∞).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. (3; + ∞);
B. [3; + ∞);
C. \[\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\];
D. \[\left( {1;2} \right) \cup \left( {3; + \infty } \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. D = [– 2; + ∞)\{0; 2};
B. D = ℝ;
C. D = [– 2; + ∞);
D. D = (– 2; + ∞)\{0; 2}.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. 7;
B. 5;
C. 4;
D. 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A.\[m < \frac{1}{2}\];
B. m ≥ 1;
C. \[m < \frac{1}{2}\]hoặc m ≥ 1;
D. m ≥ 2 hoặc m < 1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\);
B. \(\left( { - \infty ; - \sqrt 3 } \right] \cup \left[ {\sqrt 3 ; + \infty } \right)\backslash \left\{ {\sqrt 7 } \right\}\);
C. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ; + \infty } \right)\backslash \left\{ {\sqrt 7 ; - \sqrt 7 } \right\}\);
D. \(\left( { - \infty ; - \sqrt 3 } \right) \cup \left( {\sqrt 3 ;\frac{7}{4}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A. m ≥ 1;
B. m < 0;
C. m > 2;
D. m ≤ 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.