12 Bài tập Xác định dấu của các giá trị lượng giác (có lời giải)
23 người thi tuần này 4.6 162 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Ta có \(\widehat A = 120^\circ \) suy ra cos A < 0.
Do tam giác ABC cân tại A nên \(\widehat B = \frac{{180^\circ - \widehat A}}{2} = \frac{{180^\circ - 120^\circ }}{2} = 30^\circ \).
Do đó sin B > 0.
Lời giải
Hướng dẫn giải:
Vì ( 0° < α < 180°) nên sin α > 0 mà tan α = \(\frac{{\sin \alpha }}{{\cos \alpha }}\) nên để sin α và tan α cùng dấu thì cos α > 0.
Do đó 0° < α < 90°.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Vì α là góc nhọn nên sin α > 0, cos α > 0, tan α > 0, cot α > 0.
Vậy A, B, C sai và D đúng.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Vì β là góc tù nên sin β > 0, cos β < 0 , tan β < 0, cot β < 0.
Vậy B đúng, A, C, D sai.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có sin α và cos α cùng dấu khi 0° < α < 90°.
Trong các đáp án đã cho, chỉ có đáp án A thỏa mãn.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
+) Với γ = 0°, ta có sin γ = 0, cos γ = 1. Do đó: sin γ . cos γ = 0 . 1 = 0.
+) Với 0° < γ < 90°, suy ra sin γ > 0, cos γ > 0. Do đó sin γ . cos γ > 0.
+) Với γ = 90°, ta có sin γ = 1, cos γ = 0. Do đó sin γ . cos γ = 1 . 0 = 0.
+) Với 90° < γ < 180° suy ra sin γ > 0, cos γ < 0. Do đó sin γ . cos γ < 0.
Vậy với γ thỏa mãn 90° < γ < 180° thì sin γ . cos γ nhận giá trị âm.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Trong ∆ABC, ta có 0° < \(\frac{A}{2}\)< 90°, và 0° < B < 180°.
Do đó cos \(\frac{A}{2}\) > 0, và sin B > 0.
Vậy P = cos \(\frac{A}{2}\). sin B > 0.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: cos 155° < 0 và cos 55° > 0 nên cos 155° < cos 55°.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có với 0° < α < 90° thì cos α > 0 và cot α > 0
Suy ra cos α và cot α cùng dấu với 0° < α < 90°.
Lại có 90° < α < 180° thì cos α < 0 và cot α < 0.
Suy ra cos α và cot α cùng dấu với 90° < α < 180°.
Tại α = 0°, ta có: cos α = 0 và cot α = 0.
Vậy không có góc α nào thỏa mãn cos α và cot α khác dấu trong các đáp án A, B, C.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
+) Với 0° < α < 90° thì tan α > 0 và cos α > 0 nên \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
+) Với 90° < α < 180° thì tan α < 0 và cos α < 0 nên \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
+) Với α = 0°, suy ra tan α = 0, cos α = 1, suy ra \(\frac{{\tan \alpha }}{{\cos \alpha }} = \frac{0}{1} = 0\).
+) Với α = 180°, suy ra tan α = 0, cos α = – 1, suy ra \(\frac{{\tan \alpha }}{{\cos \alpha }} = \frac{0}{{ - 1}} = 0\).
Vậy với α thỏa mãn 0° < α < 90° và 90° < α < 180° thì \(\frac{{\tan \alpha }}{{\cos \alpha }} > 0\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Ta có: P = sinα.cosα.tanα \( = \sin \alpha .\cos \alpha .\frac{{\sin \alpha }}{{\cos \alpha }} = {\sin ^2}\alpha \ge 0\) với mọi α.
Nên không tồn tại α thỏa mãn P = sinα.cosα.tanα < 0.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Trong tam giác ABC, vì góc C là góc tù, suy ra góc A và góc B là góc nhọn.
Do đó sin A > 0, cos B > 0 và cos C < 0
Vậy sin A. cos B. cos C < 0.
32 Đánh giá
50%
40%
0%
0%
0%