12 Bài tập Chứng minh đẳng thức lượng giác (có lời giải)
21 người thi tuần này 4.6 146 lượt thi 12 câu hỏi 45 phút
🔥 Đề thi HOT:
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Các bài toán thực tế ứng dụng nhị thức Newton (có lời giải)
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
10 Bài tập Viết phương trình cạnh, đường cao, trung tuyến, phân giác của tam giác (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải:
Cách 1. Ta có \({\cos ^4}\alpha = {\left( {{{\cos }^2}\alpha } \right)^2} = {\left( {1 - {{\sin }^2}\alpha } \right)^2} = 1 - 2{\sin ^2}\alpha + {\sin ^4}\alpha \)
Do đó: sin4 α − cos4 α = sin4 α – (1 – 2sin2 α + sin4 α) = 2 sin2 α − 1.
Vậy ta được điều phải chứng minh.
Cách 2. Ta có sin4 α − sin4 α = (sin2 α + cos2 α)( sin2 α − cos2 α)
= 1. [sin2 α – (1 − sin2 α)] = 2 sin2 α − 1.
Vậy sin4 α − cos4 α = 2 sin2 α − 1.
Cách 3. Ta sử dụng phép biến đổi tương đương
sin4 α − cos4 α = 2 sin2 α − 1
⇔ sin4 α − 2 sin2 α + 1 − cos4 α = 0
⇔ (1 − sin2 α)2 − cos4 α = 0
⇔ cos4 α − cos4 α = 0 (luôn đúng).
Vậy đẳng thức được chứng minh.
Lời giải
Hướng dẫn giải:
Áp dụng định lí tổng ba góc trong tam giác ABC, ta có \(\widehat A\)+ \(\widehat B\)+ \(\widehat C\) = 180°.
Suy ra: 180° −\(\widehat A\)= \(\widehat B\)+ \(\widehat C\).
Do đó: cos(180° – A) = cos(B + C).
Lại có: cos(180° – A) = – cosA (quan hệ giữa hai góc bù nhau).
Khi đó ta có: – cosA = cos(B + C) ⇔ cosA = – cos(B + C).
Vậy đẳng thức được chứng minh.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: D.
Từ hệ thức cos2 α + sin2 α = 1, ta suy ra được:
\[{\cos ^2}\frac{\alpha }{2} + {\sin ^2}\frac{\alpha }{2} = 1\]; \[{\cos ^2}\frac{\alpha }{3} + {\sin ^2}\frac{\alpha }{3} = 1\]; \[{\cos ^2}\frac{\alpha }{4} + {\sin ^2}\frac{\alpha }{4} = 1\]; \[{\cos ^2}\frac{\alpha }{5} + {\sin ^2}\frac{\alpha }{5} = 1\].
Suy ra: \[5\left( {{{\cos }^2}\frac{\alpha }{5} + {{\sin }^2}\frac{\alpha }{5}} \right) = 5.1 = 5\].
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Tam giác ABC có: \(\widehat A\)+ \(\widehat B\)+ \(\widehat C\) = 180° (định lí tổng ba góc trong tam giác).
Suy ra: 180° −\(\widehat A\)= \(\widehat B\)+ \(\widehat C\) và
Do đó sin A = sin (180° − A) = sin (B + C), suy ra khẳng định A đúng.
Lại có \(\frac{{\widehat A + \widehat B + \widehat C}}{2} = \frac{{180^\circ }}{2} = 90^\circ \) \( \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = 90^\circ \)
Do đó:\(\cos \frac{A}{2} = \sin \frac{{B + C}}{2}\) (hai góc phụ nhau), suy ra khẳng định C đúng.
Mặt khác tan A = − tan (180° −\(\widehat A\)) = − tan (B + C), suy ra khẳng định D đúng và B sai.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Do 0° < x < 90° nên tanx > 0 và cotx > 0.
Ta có tanx . cotx = 1, suy ra cotx = \(\frac{1}{{tanx}}\).
Khi đó: \(\frac{{1 + \cot x}}{{1 - \cot x}}\) = \(\frac{{1 + \frac{1}{{\tan x}}}}{{1 - \frac{1}{{\tan x}}}} = \frac{{\frac{{\tan x + 1}}{{\tan x}}}}{{\frac{{\tan x - 1}}{{\tan x}}}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
Vậy \(\frac{{1 + \cot x}}{{1 - \cot x}} = \frac{{\tan x + 1}}{{\tan x - 1}}\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Với 0° ≤ x ≤ 180°, ta có
(sin x + cos x)2 = sin2 x + 2sin x. cos x + cos2 x = 1 + 2sin x. cos x.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Với 0° ≤ x ≤ 180°, ta có
sin4 x + cos4 x
= (sin2 x)2 + (cos2 x)2
= [(sin2 x)2 + 2 sin2 x. cos2 x + (cos2 x)2] – 2 sin2 x. cos2 x
= (sin2 x + cos2 x)2 – 2 sin2 x. cos2 x
= 1 – 2 sin2 x. cos2 x.
Vậy sin4 x + cos4 x = 1 – 2 sin2 x. cos2 x.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có:
(sin2 x + cos2 x)2 + (sin2 x − cos2 x)2
= sin2 x + 2sin x. cos x + cos2 x + sin2 x − 2sin x. cos x + cos2 x
= 2(sin2 x + cos2 x) = 2 . 1 = 2.
Vậy giá trị của biểu thức (sin2 x + cos2 x)2 + (sin2 x − cos2 x)2 không phụ thuộc vào biến x và có kết quả bằng 2.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Vì sin2 x + cos2 x = 1, suy ra (sin2 x + cos2 x)3 = 13 = 1.
Do đó ta có
1 − (sin6 x + cos6 x)
= \({\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - \left( {{{\sin }^6}x + {{\cos }^6}x} \right)\)
\( = {\sin ^6}x + {\cos ^6}x + 3\left( {{{\sin }^2}x + {{\cos }^2}x} \right){\sin ^2}x.{\cos ^2}x - {\sin ^6}x - {\cos ^6}x\)
\( = 3.1.{\sin ^2}x.{\cos ^2}x = 3{\sin ^2}x.{\cos ^2}x\).
Vậy 1 − (sin6 x + cos6 x) = 3sin2 x . cos 2 x.
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Áp dụng quan hệ giữa các giá trị lượng giác của hai góc bù nhau ta có:
sin 20° = sin(180° − 160°) = sin 160°;
cos 20° = cos(180° − 160°) = − cos 160°;
tan 20° = tan(180° − 160°) = − tan 160°;
cot 20° = cot(180° − 160°) = − cot 160°.
Vậy đáp án A đúng, B, C, D sai.
Câu 11
Biểu thức \(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\) bằng biểu thức nào sau đây?
Lời giải
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: \({\sin ^4}x + 4{\cos ^2}x = {\sin ^4}x + 4.\left( {1 - {{\sin }^2}x} \right) = {\left( {{{\sin }^2}x - 2} \right)^2}\)
Và \({\cos ^4}x + 4{\sin ^2}x = {\cos ^4}x + 4\left( {1 - {{\cos }^2}x} \right) = {\left( {{{\cos }^2}x - 2} \right)^2}\)
Do đó
\(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\)
\( = \sqrt {{{\left( {{{\sin }^2}x - 2} \right)}^2}} + \sqrt {{{\left( {{{\cos }^2}x - 2} \right)}^2}} + {\tan ^2}x\)
\( = \left| {{{\sin }^2}x - 2} \right| + \left| {{{\cos }^2}x - 2} \right| + {\tan ^2}x\) (do \(0 \le {\cos ^2}x;{\sin ^2}x \le 1\))
\( = 2 - {\sin ^2}x + 2 - {\cos ^2}x + {\tan ^2}x\)
\( = 4 - \left( {{{\cos }^2}x + {{\sin }^2}x} \right) + {\tan ^2}x\)
\( = 4 - 1 + {\tan ^2}x = 3 + {\tan ^2}x\).
Vậy \(\sqrt {{{\sin }^4}x + 4{{\cos }^2}x} + \sqrt {{{\cos }^4}x + 4{{\sin }^2}x} + {\tan ^2}x\) = 3 + tan2x.
Lời giải
Hướng dẫn giải.
Đáp án đúng là: B.
Với 0° < α < 90°, ta có
sin (α + 90°)
= sin (180° − ( α + 90° )) (hai góc bù nhau)
= sin (90°− α )
= cos α (hai góc phụ nhau).
Vậy sin (α + 90°) = cos α.
29 Đánh giá
50%
40%
0%
0%
0%