Đề kiểm tra Bài tập cuối chương IV (có lời giải) - Đề 1
201 người thi tuần này 4.6 527 lượt thi 22 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích vô hướng của hai vectơ (có lời giải) - Đề 1
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
75 câu Trắc nghiệm: Tích vô hướng của hai vectơ có đáp án
81 câu Trắc nghiệm Toán 10 Bài tích vô hướng của hai vecto có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn D
Ta có \(\overrightarrow a = - \overrightarrow b \). Do đó, \(\overrightarrow a \) và \(\overrightarrow b \) cùng phương, cùng độ dài và ngược hướng nhau.
Câu 2
Lời giải
Chọn A

Nhìn hình ta thấy vectơ đối của vectơ \[\overrightarrow {DN} \] là:\[\overrightarrow {AM} ,{\rm{ }}\overrightarrow {MB} ,{\rm{ }}\overrightarrow {ND} \].
Câu 3
Lời giải

Chọn C
Ta có tứ giác \(DMBN\) là hình bình hành vì \(DM = NB = \frac{1}{2}AB,\,\,DM//NB\). Suy ra \(\overrightarrow {DM} = \overrightarrow {NB} \).
Xét tam giác \(CDQ\) có \(M\) là trung điểm của \(DC\) và \(MP//QC\) do đó \(P\) là trung điểm của \(DQ\). Tương tự xét tam giác \(ABP\) suy ra được \(Q\) là trung điểm của \(PB\)
Vì vậy \(DP = PQ = QB\) từ đó suy ra \(\overrightarrow {DP} = \overrightarrow {PQ} = \overrightarrow {QB} \).
Câu 4
Lời giải

Chọn C
Ta có \[\overrightarrow {CI} = \overrightarrow {DA} \] suy ra \(AICD\) là hình bình hành
\( \Rightarrow \overrightarrow {AD} = \overrightarrow {IC} \)
Ta có \(DC = AI\) mà \(AB = 2CD\) do đó \(AI = \frac{1}{2}AB \Rightarrow \)\(I\)là trung điểm \(AB\)
Ta có \(DC = IB\) và \[DC//IB \Rightarrow \]tứ giác \(BCDI\) là hình bình hành
Suy ra \[\overrightarrow {DI} = \overrightarrow {CB} \]
Câu 5
Lời giải
Chọn B

Ta có \(AH \bot BC\) và \(DC \bot BC\) (do góc \(\widehat {DCB}\) chắn nửa đường tròn). Suy ra \(AH\parallel DC.\)
Tương tự ta cũng có \(CH\parallel AD.\)
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.