4 câu Trắc nghiệm Toán 8 Bài 4: Khái niệm hai tam giác đồng dạng có đáp án (Vận dụng)
39 người thi tuần này 4.6 1.7 K lượt thi 4 câu hỏi 10 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Đáp án D
Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra
Do đó
Chu vi ΔDBM bằng
Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra , do đó
Chu vi ΔEMC bằng cm
Vậy chu vi ΔDBM và chu vi ΔEMC lần lượt là 10cm; 20cm
Lời giải
Đáp án A
Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra
Do đó (1)
Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra , do đó (2)
Từ (1) và (2) suy ra:
Lời giải
Đáp án C
Vì ABCD là hình bình hành nên ME // DE và EN // AB.
+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng
+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC
=> ΔCBA ~ ΔADC
ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1
+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng
Vậy cả (I), (II), (III) đều đúng
Lời giải
Đáp án C
Vì ABCD là hình bình hành nên ME // DE và EN // AB.
+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng
+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC
=> ΔCBA ~ ΔADC
ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1
+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng
Vậy cả (I), (II), (III) đều đúng nên có 3 khẳng định đúng
339 Đánh giá
50%
40%
0%
0%
0%