Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học có đáp án

26 người thi tuần này 4.6 2.5 K lượt thi 4 câu hỏi 45 phút

🔥 Đề thi HOT:

1747 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
950 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.8 K lượt thi 15 câu hỏi
766 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.2 K lượt thi 18 câu hỏi
583 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Cho hình bình hành ABCD. Gọi E  và F theo thứ tự là trung điểm của AB và CD .  a) Chứng minh rằng AF // CE . (ảnh 1)

a) Ta có ABCD là hình bình hành nên

AB = CD (tc hbh).

Mà E, F là trung điểm cuả AB và CD

=> AB = CF = BE = DF .

Xét tứ giác AECF, có AE=CFAECF(doABCD)

AEFC là hình bình hành => AF // EC

Lời giải

b) Gọi ACBD=O

Xét ΔADC có DO, AF là trung tuyến; AFDO=M

=> M là trọng tâm của ΔADC

DM=23DO=23BO(1)OM=13DO=13BO(2)(doDO=BO)

Xét ΔABC có: BO, CE là trung tuyến, BOCE=N

=> N là trọng tâm của ΔABC

BN=23BO(3)ON=13BO(4)

Từ (2) và (4) 

Từ (1); (3) và (5)

=> DM = BN = MN (đpcm).

Lời giải

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo, E và F theo thứ tự là trung điểm của OD  và OB   a) Chứng minh rằng AE // CF  (ảnh 1)

a) ACBD=ODO=BO

E, F là trung điểm của DO và BO nên: DE = EO = OF = FB

Xét tứ giác AFCE, có:

ACEF=OOA=OCOE=OF

=> AFCE là hình bình hành (dhnb)

=> AE // CF (tc hbh).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

507 Đánh giá

50%

40%

0%

0%

0%