6 câu Trắc nghiệm Toán 8 Bài 11: Hình thoi có đáp án (Vận dụng)

26 người thi tuần này 4.6 1.8 K lượt thi 6 câu hỏi 30 phút

🔥 Đề thi HOT:

1666 người thi tuần này

Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)

13.2 K lượt thi 19 câu hỏi
844 người thi tuần này

15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án

4.7 K lượt thi 15 câu hỏi
804 người thi tuần này

Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)

3.4 K lượt thi 18 câu hỏi
578 người thi tuần này

Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án

4.8 K lượt thi 13 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Cho hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi. Hãy chọn câu đúng.

Lời giải

Vì chu vi hinh thoi là 16cm nên cạnh hình thoi có độ dài 16 : 4 = 4cm.

Suy ra AD = 4cm

Xét tam giác AHD vuông tại H có AH = 12AD => ADH^ = 300 (tính chất)

Suy ra  DAB^ = 1800 - ADC^ = 1800 – 300 = 1500 (vì ABCD là hình thoi)

Nên hình thoi ABCD có  D^=B^ = 300; A^=C^ = 1500 (vì hai góc đối bằng nhau)

Đáp án cần chọn là: A

Câu 2

Cho hình thoi ABCD có chu vi bằng 24 cm, đường cao AH bằng 3cm. Tính DCA^

Lời giải

Vì chu vi hinh thoi là 16cm nên cạnh hình thoi có độ dài 24 : 4 = 6cm.

Suy ra AD = 6cm

Xét tam giác AHD vuông tại H có AH = 12AD =>  ADH^ = 300 (tính chất)

Suy ra  DAB^ = 1800 - ADC^ = 1800 – 300 = 1500 (vì ABCD là hình thoi)

Nên hình thoi ABCD có D^=B^ = 300;  A^=C^ = 1500 (vì hai góc đối bằng nhau)

Lại có: CA là tia phân giác DCB^ (tính chất hình thoi)

Nên DCA^ =  12DCB^ = 12.1500 = 750

Đáp án cần chọn là: D

Lời giải

Gọi G, H lần lượt là trung điểm của AC, BD.

Vì E, G lần lượt là trung điểm của AB, AC nên EG là đường trung bình của tam giác ABC. Suy ra EG = 12BC, EG // BC.

Chứng minh tương tự ta cũng có:

GF = 12AD, FH = 12BC, HE = 12AD; GF // AD; FH // BC; HE // AD

Mà AD = BC (gt), nên EG = GF = FH = HE

Suy ra: tứ giác EGFH là hình thoi.

Suy ra EF là tia phân giác của góc HFG

=> EFG^=12HFG^

 GFC^=ADC^ = 800 (do GF // AD);  

HFG^=BCD^ = 500 (do FH // BC)

Do đó HFG^ = 1800 – (GFC^+HFD^) = 500

=> EFG^ = 12.500 = 250

Vậy  EFC^ = 250 + 800 = 1050

Đáp án cần chọn là: C

Lời giải

Tam giác EAM vuông tại E, EI là đường trung tuyến nên: EI = IM = IA = 12AM.

Từ EI = IA suy ra tam giác IAE cân tại I, từ đó có: EID^=2.EAI^ (góc ngoài của tam giác).

Chứng minh tương tự với tam giác vuông ADM ta có: MID^=2.IAD^ = 2, DI = 12AM.

Do đó: EI = DI ( = 12AM); 

EID^=EIM^+MID^=2.EAD^=600

Tam giác IED cân (vì EI = DI) có: EID^ = 600 nên là tam giác đều, từ đó EI = ED = ID.

Tương tự tam giác IDF đều suy ra: ID = DF = IF.

Do đó EI = ED = DF = IF. Suy ra tứ giác EIFD là hình thoi.

Suy ra K là trung điểm chung của EF và ID.

Gọi N là trung điểm của AH.

Tam giác ABC đều có H là trực tâm của tam giác ABC nên H cũng là trọng tâm tam giác.

Do đó AN = NH = HD.

Ta có: MH // IN (vì IN là đường trung bình của tam giác AMH) và KH // IN (vì KH là đường trung bình của tam giác DIN).

Từ H ta chỉ vẽ được một đường thẳng song song với IN (tiên đề Ơ – clit) nên M, H, K thẳng hang.

Vậy D sai vì ID = IF.

Đáp án cần chọn là: D

Lời giải

Từ giả thiết ta có MP, NP, NQ, QM lần lượt là các đường trung bình của các tam giác BDE, ECD, DCB, BEC (định nghĩa đường trung bình).

Đặt BD = CE = 2a

Áp dụng định lý đường trung bình và giả thiết vào bốn tam giác trên ta được:

MP = 12BD = a; NQ = 12BD = a; NP = 12CE = a; MQ = 12CE = a.

Suy ra MN = NP = PQ = QM

Tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi.

Áp dụng tính chất về đường chéo vào hình thoi MNPQ ta được: MN ⊥ PQ

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

362 Đánh giá

50%

40%

0%

0%

0%