Đề cương ôn tập giữa kì 1 Toán 10 Cánh diều cấu trúc mới có đáp án - Bài Tự luận
19 người thi tuần này 4.6 829 lượt thi 20 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
a) Mệnh đề trên sai vì 02 = 0.
Mệnh đề phủ định là: \(\exists x \in \mathbb{R}:{x^2} \le 0\). Đây là mệnh đề đúng.
b) Mệnh đề trên đúng vì \(\frac{1}{2} > {\left( {\frac{1}{2}} \right)^2}\).
Mệnh đề phủ định là: \(\forall x \in \mathbb{R}:x \le {x^2}\). Mệnh đề phủ định sai.
c) TH1: \(n = 3k\)
Ta có \({n^2} + 1 = {\left( {3k} \right)^2} + 1 = 9{k^2} + 1\) chia 3 dư 1.
TH2: \(n = 3k + 1\)
Ta có \({n^2} + 1 = {\left( {3k + 1} \right)^2} + 1 = 9{k^2} + 6k + 2\) chia 3 dư 2.
TH3: \(n = 3k + 2\)
Ta có \({n^2} + 1 = {\left( {3k + 2} \right)^2} + 1 = 9{k^2} + 12k + 5\) chia cho 3 dư 2.
Vậy \(\forall n \in \mathbb{N},{n^2} + 1\) không chia hết cho 3 là mệnh đề đúng.
Mệnh đề phủ định: \(\exists n \in \mathbb{N},{n^2} + 1\) chia hết cho 3. Mệnh đề này sai.
Lời giải
a) Ta có \[\left( {{x^2} - 1} \right)\left( {2{x^2} - 3x - 2} \right) = 0\]\[ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 1 = 0\\2{x^2} - 3x - 2 = 0\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\x = 2\\x = - \frac{1}{2}\end{array} \right.\].
Vì \(x \in \mathbb{Z}\) nên \(x = \pm 1;x = 2\).
Vậy \(M = \left\{ { - 1;1;2} \right\}\).
b) Có \(A \cap B = \left[ {1;3} \right)\); \(A\backslash B = \left( { - 2;1} \right)\).
Lời giải
a) Ta có \(A = \left[ { - 3;5} \right)\) và \(B = \left[ {1; + \infty } \right)\)

Ta có \(A \cap B = \left[ {1;5} \right);A \cup B = \left[ { - 3; + \infty } \right);A\backslash B = \left[ { - 3;1} \right)\).
b) Ta có \(A = \left\{ {x \in \mathbb{R}|x \le 3} \right\}\) và \(B = \left\{ {x \in \mathbb{R}| - 2 < x < 2} \right\}\).
Ta có: \(A = \left( { - \infty ;3} \right]\) và \(B = \left( { - 2;2} \right)\).

Do đó \(A \cap B = \left( { - 2;2} \right);A \cup B = \left( { - \infty ;3} \right];A\backslash B = \left( { - \infty ; - 2} \right] \cup \left[ {2;3} \right]\).
Lời giải
Để \(A \cap B = \emptyset \) thì \(\left[ \begin{array}{l}m - 2 \le 3\\m - 10 \ge 4\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}m \le 5\\m \ge 14\end{array} \right.\).
Lời giải
a) Để \(A \cap B = \emptyset \) thì \(m \le 3m - 1 \Leftrightarrow m \ge \frac{1}{2}\).
b) Để \(B \subset A\) thì \(3m + 3 < m \Leftrightarrow 2m < - 3 \Leftrightarrow m < - \frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

