Đề kiểm tra 15 phút Toán 8 Chương 1 Hình Học có đáp án (Đề 3)
17 người thi tuần này 4.6 9.3 K lượt thi 1 câu hỏi 15 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Dạng 1. Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
10 câu Trắc nghiệm Toán 8 Bài 3: Tính chất đường phân giác của tam giác có đáp án (Thông hiểu)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
a) Ta có: BI + AI = AB
KD + CK = CD
Mà AI = CK; AB = CD
⇒ BI = KD
Xét ΔIBJ và ΔKDL có:
IB = KD
∠(IBJ) = ∠(KDL) (do ABCD là hình bình hành)
BJ = LD (gt)
⇒ ΔIBJ = ΔKDL (c.g.c)
⇒ IJ = KL
Chứng minh tương tự: ΔJCK= ΔLAI
⇒ JK = IL
Vậy tứ giác IJKL là hình bình hành (các cạnh đối bằng nhau)
b) Gọi O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD ta có O là trung điểm của AC.
Lại có tứ giác AICK là hình bình hành (AI // CK và AI = CK )
⇒ đường chéo IK đi qua trung điểm O của AC.
Tứ giác IJKL là hình bình hành (cmt) ⇒ đường chéo JL đi qua trung điểm O của đường chéo IK.
Vậy bốn đường thẳng AC, BD, IK, JL đồng quy tại O.