5 câu Trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Phần 2) có đáp án (Vận dụng)
28 người thi tuần này 4.6 1.5 K lượt thi 5 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Kẻ AH ⊥ BC tại H.
Ta có:
⦁ \(\overrightarrow {BC} = \left( { - 3; - 3} \right)\). Suy ra \(\frac{1}{4}\overrightarrow {BC} = \left( {\frac{1}{4}.\left( { - 3} \right);\frac{1}{4}.\left( { - 3} \right)} \right) = \left( {\frac{{ - 3}}{4};\frac{{ - 3}}{4}} \right)\);
⦁ \(\overrightarrow {BM} = \left( {x - 2;y - 1} \right)\).
Ta có SABC = 4SABM
Suy ra \(\frac{1}{2}AH.BC = 4.\frac{1}{2}AH.BM\)
Do đó BC = 4BM
Vì vậy \(BM = \frac{1}{4}BC\)
Suy ra \(\overrightarrow {BM} = \frac{1}{4}\overrightarrow {BC} \)
Do đó \(\left\{ \begin{array}{l}x - 2 = - \frac{3}{4}\\y - 1 = - \frac{3}{4}\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}x = \frac{5}{4}\\y = \frac{1}{4}\end{array} \right.\)
Suy ra \({x^2} - {y^2} = {\left( {\frac{5}{4}} \right)^2} + {\left( {\frac{1}{4}} \right)^2} = \frac{{13}}{8}\).
Vậy ta chọn phương án A.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Chọn A(0; 1) ∈ ∆.
Đường thẳng ∆ có vectơ pháp tuyến \(\vec n = \left( {1;1} \right)\).
Suy ra đường thẳng ∆ nhận \(\vec u = \left( {1; - 1} \right)\) làm vectơ chỉ phương.
Đường thẳng ∆ đi qua A(0; 1) và có vectơ chỉ phương \(\vec u = \left( {1; - 1} \right)\).
Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = t\\y = 1 - t\end{array} \right.\)
Ta có M ∈ ∆. Suy ra M(t; 1 – t).
Ta có \(\overrightarrow {NM} = \left( {t + 1; - 2 - t} \right)\).
Suy ra \(NM = \left| {\overrightarrow {NM} } \right| = \sqrt {{{\left( {t + 1} \right)}^2} + {{\left( { - 2 - t} \right)}^2}} \).
Theo đề, ta có MN = 5.
⇔ (t + 1)2 + (–2 – t)2 = 25.
⇔ t2 + 2t + 1 + 4 + 4t + t2 = 25.
⇔ 2t2 + 6t – 20 = 0.
⇔ t = 2 hoặc t = –5.
Với t = 2, ta có tọa độ M(2; –1).
Với t = –5, ta có tọa độ M(–5; 6).
Vậy ta chọn phương án A.
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: B

Ta có \(\overrightarrow {AB} = \left( {3; - 1} \right)\). Suy ra \(AB = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \).
Đường thẳng AB có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 1} \right)\).
Suy ra đường thẳng AB có vectơ pháp tuyến \({\vec n_{AB}} = \left( {1;3} \right)\).
Đường thẳng AB đi qua A(2; 2) và có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 1} \right)\).
Suy ra phương trình tổng quát của AB: 1(x – 2) + 3(y – 2) = 0.
⇔ x + 3y – 8 = 0.
Đường thẳng ∆ đi qua điểm M(–8; 0) và có vectơ chỉ phương \({\vec u_\Delta } = \left( {2;1} \right)\).
Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = - 8 + 2t\\y = t\end{array} \right.\)
Ta có C ∈ ∆. Suy ra tọa độ C(2t – 8; t).
Theo đề, ta có diện tích tam giác ABC bằng 17.
\( \Leftrightarrow \frac{1}{2}d\left( {C,AB} \right).AB = 17\).
\( \Leftrightarrow \frac{1}{2}.\frac{{\left| {2t - 8 + 3t - 8} \right|}}{{\sqrt {{1^2} + {3^2}} }}.\sqrt {10} = 17\)
⇔ |5t – 16| = 34
\( \Leftrightarrow \left[ \begin{array}{l}5t - 16 = 34\\5t - 16 = - 34\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}t = 10\\t = - \frac{{18}}{5}\end{array} \right.\)
Với t = 10, ta có C(12; 10).
Với \(t = - \frac{{18}}{5}\), ta có \(C\left( { - \frac{{76}}{5}; - \frac{{18}}{5}} \right)\).
Vậy C(12; 10) hoặc \(C\left( { - \frac{{76}}{5}; - \frac{{18}}{5}} \right)\) thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Đường tròn (C) có tâm I(–1; 3), bán kính \(R = \sqrt {{{\left( { - 1} \right)}^2} + {3^2} - 5} = \sqrt 5 \).
Gọi ∆ là tiếp tuyến cần tìm.
Đường thẳng d có vectơ pháp tuyến \({\vec n_d} = \left( {1;2} \right)\).
Vì ∆ // d nên ∆ nhận \({\vec n_d} = \left( {1;2} \right)\) làm vectơ pháp tuyến.
Suy ra phương trình ∆ có dạng: x + 2y + c = 0.
Vì d là tiếp tuyến của (C) nên d(I, ∆) = R.
\( \Leftrightarrow \frac{{\left| { - 1 + 2.3 + c} \right|}}{{\sqrt {{1^2} + {2^2}} }} = \sqrt 5 \)
⇔ |c + 5| = 5
⇔ c + 5 = 5 hoặc c + 5 = –5
⇔ c = 0 hoặc c = –10.
Vậy có 2 phương trình tiếp tuyến d thỏa mãn yêu cầu bài toán có phương trình là: x + 2y = 0 hoặc x + 2y – 10 = 0.
Do đó ta chọn phương án A.
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Tọa độ giao điểm của đường thẳng d và elip (E) thỏa mãn hệ phương trình: \[\left\{ \begin{array}{l}x = - 4\\\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\]
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\\frac{{{{\left( { - 4} \right)}^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\{y^2} = \frac{{81}}{{25}}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = - 4\\y = \pm \frac{9}{5}\end{array} \right.\)
Suy ra tọa độ \(M\left( { - 4; - \frac{9}{5}} \right),\,\,N\left( { - 4;\frac{9}{5}} \right)\).
Khi đó \(MN = \sqrt {{{\left( { - 4 + 4} \right)}^2} + {{\left( {\frac{9}{5} + \frac{9}{5}} \right)}^2}} = \frac{{18}}{5}\).
Vậy ta chọn phương án C.