8 câu Trắc nghiệm Toán 10 Cánh Diều Hệ bất phương trình bậc nhất hai ẩn (Thông hiểu) có đáp án
26 người thi tuần này 4.6 1.6 K lượt thi 8 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 0) và (0; −2) nên ta có :
Vậy (d1): y = 2x – 2 ⇔ 2x − y − 2 = 0.
Thay điểm (0; 2) thuộc miền nghiệm vào (d1) ta được:
2 . 0 − 2 − 2 < 0
Do đó ta có bất phương trình 2x − y − 2 < 0 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (1; 1) và (0; 1) nên ta có :
Vậy (d2): y = 1.
Thay điểm (0; 2) thuộc miền nghiệm vào (d2) ta được:
2 > 1
Do đó ta có bất phương trình y ≥ 1 (kể cả đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình cần tìm là: .
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (0; 0) và (2; 1) nên ta có :
Vậy (d1): y = x ⇔ x − y = 0.
Thay điểm (0; 1) thuộc miền nghiệm vào (d1) ta được:
. 0 − 1 < 0
Do đó ta có bất phương trình x − y < 0 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (−1; 2) và (−2; 1) nên ta có :
Vậy (d2): y = x + 3.
Thay điểm (0; 2) thuộc miền nghiệm vào (d2) ta được:
2 < 0 + 3
Do đó ta có bất phương trình y < x + 3 (không kể đường thẳng d2) (2)
Từ (1) và (2) ta có hệ bất phương trình .
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Thay (3; −1) vào bất phương trình (1) ta được:
3 − 5 . (−1) > 0 ⇔ 8 > 0 (luôn đúng)
Thay (3; −1) vào bất phương trình (2) ta được:
3 − 1 − 1 < 0 ⇔ 2 < 0 (vô lí)
Vậy điểm A thuộc miền nghiệm của (1) nhưng không thuộc miền nghiệm của (2).
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Xét đường thẳng d1: y = a1x + b1 đi qua điểm (1; 2) và (−1; 1) nên ta có :
Vậy (d1): y = x + ⇔ −x + 2y = 3.
Thay điểm (0; 3) thuộc miền nghiệm vào (d1) ta được:
−0 + 2 . 3 > 3
Do đó ta có bất phương trình −x + 2y > 3 (không kể đường thẳng d1) (1)
Xét đường thẳng d2: y = a2x + b2 đi qua điểm (0; 1) và (1; 0) nên ta có :
Vậy (d2): y = −x + 1 ⇔ x + y − 1 = 0
Thay điểm (0; 3) thuộc miền nghiệm vào (d2) ta được:
0 + 3 − 1 > 0
Do đó ta có bất phương trình x + y − 1 > 0 (không kể đường thẳng d2) (2)
Xét đường thẳng d3: y = a3x + b3 đi qua điểm (0; 2) và (1; 2) nên ta có :
Vậy (d3): y = 2.
Thay điểm (0; 3) thuộc miền nghiệm vào (d3) ta được:
3 > 2
Do đó ta có bất phương trình y > 2 (không kể đường thẳng d3) (3)
Từ (1), (2), (3) ta có hệ bất phương trình .
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Điểm (2; 0) nằm trên mặt phẳng không bị gạch nên (2; 0) thuộc miền nghiệm của hệ bất phương trình trên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.