8 câu Trắc nghiệm Toán 10 Cánh diều Phương trình đường tròn (Phần 2) có đáp án (Thông hiểu)

40 người thi tuần này 5.0 1.4 K lượt thi 8 câu hỏi 30 phút

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Với giá trị nào của m thì phương trình x2 + y2 – 2(m + 2)x + 4my + 19m – 6 = 0 là phương trình đường tròn?

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0, với \(\left\{ \begin{array}{l} - 2a = - 2\left( {m + 2} \right)\\ - 2b = 4m\\c = 19m - 6\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = m + 2\\b = - 2m\\c = 19m - 6\end{array} \right.\)

Để phương trình đã cho là phương trình đường tròn thì a2 + b2 – c > 0.

(m + 2)2 + (–2m)2 – 19m + 6 > 0.

5m2 – 15m + 10 > 0.

m < 1 hoặc m > 2.

Vậy m < 1 hoặc m > 2 thì phương trình đã cho là phương trình đường tròn.

Do đó ta chọn phương án C.

Câu 2

Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Phương trình đường tròn có dạng x2 + y2 – 2ax – 2by + c = 0, với \(\left\{ \begin{array}{l} - 2a = 2\\ - 2b = 4\\c = - 20\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\\c = - 20\end{array} \right.\)

Suy ra (C) có tâm I(–1; –2).

Do đó phương án A sai.

Ta có \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + 20} = 5\).

Suy ra (C) có đường kính 2R = 10.

Do đó phương án B đúng.

Thế tọa độ điểm M(2; 2) vào phương trình (C), ta được:

22 + 22 + 2.2 + 4.2 – 20 = 0 (đúng).

Suy ra M(2; 2) (C).

Do đó phương án C đúng.

Thế tọa độ điểm A(1; 1) vào phương trình (C), ta được:

12 + 12 + 2.1 + 4.1 – 20 = – 12 ≠ 0.

Suy ra A(1; 1) (C).

Do đó phương án D đúng.

Vậy ta chọn phương án A.

Câu 3

Đường tròn tâm I(1; 4) và đi qua điểm B(2; 6) có phương trình là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(R = IB = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {6 - 4} \right)}^2}} = \sqrt 5 \).

Đường tròn có tâm I(1; 4) và có bán kính \(R = \sqrt 5 \) có phương trình là:

(x – 1)2 + (y – 4)2 = 5.

Vậy ta chọn phương án D.

Câu 4

Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Do đường tròn tiếp xúc với đường thẳng ∆ nên bán kính của đường tròn bằng khoảng cách từ tâm đường tròn đến đường thẳng ∆.

Tức là, \(R = d\left( {I,\Delta } \right) = \frac{{\left| {3 - 5.\left( { - 2} \right) + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{14}}{{\sqrt {26} }}\).

Vậy bán kính của đường tròn đã cho bằng \(\frac{{14}}{{\sqrt {26} }}\).

Do đó ta chọn phương án C.

Câu 5

Cho hai điểm A(1; 1) và B(7; 5). Phương trình đường tròn đường kính AB là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Gọi I là trung điểm AB. Suy ra tọa độ I(4; 3).

Ta có \(AI = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt {13} \).

Vì đường tròn cần tìm có đường kính là AB nên đường tròn đó nhận trung điểm I(4; 3) là tâm và có bán kính \(R = AI = \sqrt {13} \).

Suy ra phương trình đường tròn cần tìm là: (x – 4)2 + (y – 3)2 = 13.

x2 + y2 – 8x – 6y + 12 = 0.

Vậy ta chọn phương án C.

Câu 6

Tâm của đường tròn đi qua ba điểm A(2; 1), B(2; 5), C(–2; 1) thuộc đường thẳng có phương trình:

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta gọi:

(C) là đường tròn cần tìm;

I(a; b) là tâm của đường tròn (C).

Vì đường tròn đi qua ba điểm A(2; 1), B(2; 5), C(–2; 1) nên ta có IA = IB = IC.

IA2 = IB2 = IC2.

\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {2 - a} \right)^2} + {\left( {5 - b} \right)^2}\\{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( {1 - b} \right)^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}8b = 24\\ - 8a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 3\\a = 0\end{array} \right.\)

Suy ra I(0; 3).

Thế tọa độ I(0; 3) vào phương trình ở phương án A, ta được: 0 – 3 + 3 = 0 (đúng).

Thế tọa độ I(0; 3) vào phương trình ở phương án B, ta được: 0 – 3 – 3 = –6 ≠ 0.

Thế tọa độ I(0; 3) vào phương trình ở phương án C, ta được: 0 + 2.3 – 3 = 3 ≠ 0.

Thế tọa độ I(0; 3) vào phương trình ở phương án D, ta được: 0 + 3 + 3 = 6 ≠ 0.

Vậy tâm I(0; 3) thuộc đường thẳng có phương trình x – y + 3 = 0.

Do đó ta chọn phương án A

Câu 7

Cho đường tròn (C): (x – 3)2 + (y – 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Đường tròn (C) có tâm I(3; 1).

Ta có \(\overrightarrow {IA} = \left( {4 - 3;4 - 1} \right) = \left( {1;3} \right)\).

Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là: 1.(x – 4) + 3(y – 4) = 0.

x + 3y – 16 = 0.

Vậy ta chọn phương án D.

Câu 8

Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) có tâm I(2; 2), bán kính R = 3.

Gọi d là tiếp tuyến cần tìm có vectơ pháp tuyến \(\vec n = \left( {A;B} \right)\).

Vì d đi qua điểm A(5; –1) nên phương trình d có dạng: A(x – 5) + B(y + 1) = 0.

Ax + By – 5A + B = 0.

Vì d là tiếp tuyến của (C) nên ta có d(I, d) = R.

\( \Leftrightarrow \frac{{\left| {A.2 + B.2 - 5A + B} \right|}}{{\sqrt {{A^2} + {B^2}} }} = 3\)

\( \Leftrightarrow \left| { - 3A + 3B} \right| = 3\sqrt {{A^2} + {B^2}} \)

9A2 – 18AB + 9B2 = 9(A2 + B2)

AB = 0.

A = 0 hoặc B = 0.

Với A = 0, ta chọn B = 1.

Suy ra phương trình d: y + 1 = 0 y = –1.

Với B = 0, ta chọn A = 1.

Suy ra phương trình d: x – 5 = 0 x = 5.

Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán có phương trình là: y = –1 hoặc x = 5.

Do đó ta chọn phương án B.

5.0

1 Đánh giá

100%

0%

0%

0%

0%