5 câu Trắc nghiệm Toán 10 Cánh diều Bài 4. Nhị thức Newton (Phần 2) có đáp án (Vận dụng)

27 người thi tuần này 4.6 1.3 K lượt thi 5 câu hỏi 30 phút

Nội dung liên quan:

Danh sách câu hỏi:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có:

\({\left( {{x^3} + 2{y^2}} \right)^5} = C_5^0.{\left( {{x^3}} \right)^5} + C_5^1.{\left( {{x^3}} \right)^4}.\left( {2{y^2}} \right) + C_5^2.{\left( {{x^3}} \right)^3}.{\left( {2{y^2}} \right)^2} + C_5^3.{\left( {{x^3}} \right)^2}.{\left( {2{y^2}} \right)^3}\)

\( + C_5^4.{\left( {{x^3}} \right)^1}.{\left( {2{y^2}} \right)^4} + C_5^5.{\left( {2{y^2}} \right)^5}\)

\( = {x^{15}} + 5.{x^{12}}.2.{y^2} + 10.{x^9}.4.{y^4} + 10.{x^6}.8.{y^6}\)\( + 5.{x^3}.16{y^8} + 32{y^{10}}\)

= x15 + 10x12.y2 + 40x9y4 + 80x6.y6 + 80x3y8 + 32y10

Số hạng 80x6y6 có số mũ của x và y bằng nhau. Do đó, hệ số cần tìm là 80.

Câu 2

Cho \({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^n}\)với x > 0 và \(C_n^2 - C_n^1 = 2\). Số hạng có số mũ thấp nhất của khai triển là:

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Ta có \(C_n^2 - C_n^1 = 2\)

\( \Leftrightarrow \frac{{n!}}{{2!.(n - 2)!}} - \frac{{n!}}{{1!.(n - 1)!}} = 2\)

\( \Leftrightarrow \frac{{n(n - 1)(n - 2)!}}{{2.(n - 2)!}} - \frac{{n(n - 1)!}}{{(n - 1)!}} = 2\)

\( \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2} - n = 2\)

\( \Leftrightarrow n(n - 1) - 2n - 4 = 0\)

\( \Leftrightarrow {n^2} - 3n - 4 = 0\)

Suy ra n = 4 hoặc n = – 1 (loại).

Với n = 4, ta có:

\({\left( {x\sqrt x + \frac{1}{{{x^4}}}} \right)^4}\)

= \[C_4^0.{\left( {x\sqrt x } \right)^4} + C_4^1.{\left( {x\sqrt x } \right)^3}.\frac{1}{{{x^4}}} + C_4^2.{\left( {x\sqrt x } \right)^2}.{\left( {\frac{1}{{{x^4}}}} \right)^2}\]

\[ + C_4^3.\left( {x\sqrt x } \right).{\left( {\frac{1}{{{x^4}}}} \right)^3} + C_4^4.{\left( {\frac{1}{{{x^4}}}} \right)^4}\]

= \[{x^6} + 4.{x^4}.\sqrt x .\frac{1}{{{x^4}}} + 6.{x^3}.\frac{1}{{{x^8}}}\]\[ + 4\left( {x\sqrt x } \right).\frac{1}{{{x^{12}}}} + \frac{1}{{{x^{16}}}}\]

= \[{x^6} + 4.\sqrt x . + 6.\frac{1}{{{x^5}}}\]\[ + 4.\frac{{\sqrt x }}{{{x^{11}}}} + \frac{1}{{{x^{16}}}}\]

Số hạng có số mũ thấp nhất của khai triển là \(\frac{1}{{{x^{16}}}}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

\[{\left( {1 + x + {x^2} + {x^3}} \right)^5} = {\left[ {\left( {1 + x} \right) + {x^2}\left( {1 + x} \right)} \right]^5} = {\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\]

Áp dụng khai triển nhị thức Newton ta có:

\({\left( {1 + {x^2}} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{\left( {{x^2}} \right)^1} + C_5^2{.1^3}.{\left( {{x^2}} \right)^2} + C_5^3{.1^2}.{\left( {{x^2}} \right)^3} + C_5^4.1.{\left( {{x^2}} \right)^4} + C_5^5.{\left( {{x^2}} \right)^5}\)

\({\left( {1 + x} \right)^5} = C_5^0{.1^5} + C_5^1{.1^4}.{x^1} + C_5^2{.1^3}.{x^2} + C_5^3{.1^2}.{x^3} + C_5^4.1.{x^4} + C_5^5.{x^5}\)

Xét \[{\left[ {\left( {1 + {x^2}} \right)\left( {1 + x} \right)} \right]^5}\] = \({\left( {1 + {x^2}} \right)^5}\).\({\left( {1 + x} \right)^5}\) để có x5 thì (x2)i.xj = x5 hay x2i + j = x5 với i; j là số tự nhiên và i; j bé hơn 5.

i

j

0

5

1

3

2

1

Khi đó, số hạng chứa x5 trong khai triển là:

\(C_5^0{.1^5}.C_5^5{x^5} + C_5^1{.1^4}.{x^2}.C_5^3{.1^2}.{x^3} + C_5^2{.1^3}.{x^4}.C_5^1{.1^4}.x\) = x5 + 50x5 + 50x5 = 101x5

Vậy hệ số của x5 trong khai triển là 101.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

268 Đánh giá

50%

40%

0%

0%

0%