8 câu Trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Phần 2) có đáp án (Thông hiểu)
28 người thi tuần này 4.6 1.7 K lượt thi 8 câu hỏi 30 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Đề kiểm tra Tích vô hướng của hai vectơ (có lời giải) - Đề 1
Đề kiểm tra Tích của một vecto với một số (có lời giải) - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
75 câu Trắc nghiệm: Tích vô hướng của hai vectơ có đáp án
81 câu Trắc nghiệm Toán 10 Bài tích vô hướng của hai vecto có đáp án (Mới nhất)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Ta có C là trọng tâm của tam giác ABD.
Suy ra \(\left\{ \begin{array}{l}{x_C} = \frac{{{x_A} + {x_B} + {x_D}}}{3}\\{y_C} = \frac{{{y_A} + {y_B} + {y_D}}}{3}\end{array} \right.\)
Do đó \(\left\{ \begin{array}{l}2 = \frac{{ - 4 + 2 + {x_D}}}{3}\\ - 2 = \frac{{1 + 4 + {y_D}}}{3}\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}{x_D} = 8\\{y_D} = - 11\end{array} \right.\)
Suy ra D(8; –11).
Vậy ta chọn phương án C.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
⦁ \(5\vec a = \left( {5.3;5.\left( { - 2} \right)} \right) = \left( {15; - 10} \right)\);
⦁ \(2\vec b = \left( {2.1;2.4} \right) = \left( {2;8} \right)\).
Suy ra \(\vec c = 5\vec a + 2\vec b = \left( {15 + 2; - 10 + 8} \right) = \left( {17; - 2} \right)\).
Vậy ta chọn phương án A.
Câu 3
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(\vec x - 2\vec a = \vec b - 3\vec c\).
Suy ra \(\vec x = 2\vec a + \vec b - 3\vec c\).
Ta có: \(2\vec a = \left( {2.2;2.1} \right) = \left( {4;2} \right)\);
Suy ra \(2\vec a + \vec b = \left( {4 + 3;2 + 4} \right) = \left( {7;6} \right)\).
Lại có \(3\vec c = \left( {3.\left( { - 7} \right);3.2} \right) = \left( { - 21;6} \right)\).
Khi đó \(\vec x = 2\vec a + \vec b - 3\vec c = \left( {7 - \left( { - 21} \right);6 - 6} \right) = \left( {28;0} \right)\).
Vậy \(\vec x = \left( {28;0} \right)\).
Do đó ta chọn phương án D.
Câu 4
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⦁ \(\overrightarrow {AB} = \left( {2;2} \right)\). Suy ra \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \);
⦁ \(\overrightarrow {AC} = \left( {6;1} \right)\). Suy ra \(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{6^2} + {1^2}} = \sqrt {37} \).
Suy ra \(\cos \widehat {BAC} = \cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\)
\( = \frac{{2.6 + 2.1}}{{2\sqrt 2 .\sqrt {37} }} = \frac{{7\sqrt {74} }}{{74}}\).
Suy ra \(\widehat {BAC} \approx 35^\circ 32'\).
Vậy ta chọn phương án B.
Câu 5
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Ta có:
⦁ \(\overrightarrow {AB} = \left( {1 - 2;1 - 5} \right) = \left( { - 1; - 4} \right)\).
Suy ra \(3\overrightarrow {AB} = \left( {3.\left( { - 1} \right);3.\left( { - 4} \right)} \right) = \left( { - 3; - 12} \right)\).
⦁ \(\overrightarrow {AC} = \left( {3 - 2;3 - 5} \right) = \left( {1; - 2} \right)\).
Suy ra \(2\overrightarrow {AC} = \left( {2.1;2.\left( { - 2} \right)} \right) = \left( {2; - 4} \right)\).
Khi đó \(\overrightarrow {AE} = 3\overrightarrow {AB} - 2\overrightarrow {AC} = \left( { - 3 - 2; - 12 - \left( { - 4} \right)} \right) = \left( { - 5; - 8} \right)\).
Lại có \(\overrightarrow {AE} = \left( {{x_E} - 2;{y_E} - 5} \right)\).
Suy ra \(\left\{ \begin{array}{l}{x_E} - 2 = - 5\\{y_E} - 5 = - 8\end{array} \right.\)
Vì vậy \(\left\{ \begin{array}{l}{x_E} = - 3\\{y_E} = - 3\end{array} \right.\)
Khi đó tọa độ E(–3; –3).
Vậy ta chọn phương án B.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.