7 câu Trắc nghiệm Toán 10 Cánh diều Hàm số bậc hai. Đồ thị hàm số bậc hai và ứng dụng có đáp án (Phần 2) (Nhận biết)
38 người thi tuần này 4.6 1.9 K lượt thi 7 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: B
Hàm số y = 5x2 – 3x + 1 là hàm số bậc hai có hệ số của x2 bằng 5, hệ số của x bằng −3 và hệ số tự do bằng 1.
Vậy a = 5, b = −3, c = 1.
Câu 2
Lời giải
Đáp án đúng là: C
Hàm số y = −4x2 + 2022 là hàm số bậc hai có hệ số của x2 bằng −4, hệ số của x bằng 0 và hệ số tự do bằng 2022.
Vậy a = −4, b = 0, c = 2022.
Câu 3
A. ;
Lời giải
Đáp án đúng là: B
Đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) là một đường parabol có đỉnh là điểm với toạ độ là .
Câu 4
Đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) là một đường parabol có trục đối xứng là đường thẳng:
Đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) là một đường parabol có trục đối xứng là đường thẳng:
A. x = ;
Lời giải
Đáp án đúng là: A
Đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) là một đường parabol có trục đối xứng là đường thẳng x = .
Câu 5
Lời giải
Đáp án đúng là: D
Hàm số y = x3 + x2 – 2022 có bậc cao nhất là bậc 3, nên đây không hàm số bậc hai.
Hàm số y = 2022x + 2021 có bậc cao nhất là bậc 1, nên đây không hàm số bậc hai.
Hàm số y = 2021 là hàm hằng.
Hàm số y = x2 – 2022 là hàm số bậc hai vì nó có dạng y = ax2 + bx + c với a = 1, b = 0 và c = – 2022.
Câu 6
A. x =;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.