5 câu Trắc nghiệm Toán 10 Cánh diều Ôn tập chương 3 có đáp án (Phần 2) (Vận dụng)
23 người thi tuần này 4.6 1.4 K lượt thi 5 câu hỏi 60 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Xác suất của biến cố (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Số gần đúng. Sai số (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Kết nối tri thức Bài ôn tập cuối chương 9 (Đúng sai - Trả lời ngắn) có đáp án
Danh sách câu hỏi:
Câu 1
Lời giải
Đáp án đúng là: A
ĐKXĐ:
Suy ra tập xác định của hàm số là D = [m – 2; +) \ {m – 1}.
Hàm số xác định trên (0; 1)
(0; 1) [m – 2; m – 1) (m – 1; +)
Vậy m (−; 1] {2} là giá trị cần tìm.
Câu 2
Lời giải
Đáp án đúng là: D
Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(8; 0) nên:
a.82 + b.8 + c = 0 64a + 8b + c = 0 (1).
Đồ thị hàm số y = ax2 + bx + c có đỉnh là I(6; 12):
= 6 −b = 12a Û 12a + b = 0 (2).
a.62 + 6b + c = 12 Û 36a + 6b + c = 12 (3).
Lấy phương trình (1) trừ phương trình (3) vế theo vế, ta được phương trình:
28a + 2b = −12. (4)
Từ phương trình (2) và (4), ta có hệ phương trình:
.
Thay a = −3, b = 36 vào phương trình (1):
64.(−3) + 8.36 + c = 0 Þ c = −96.
Vậy a = −3, b = 36, c = −96.
Vậy hàm số cần tìm là y = −3x2 + 36x – 96.
Câu 3
Lời giải
Đáp án đúng là: A
Ta có: |x + 3|(x – 2) + m – 1 = 0
Û m = 1 − |x + 3|(x – 2)
Xét hàm số y = 1 − |x + 3|(x – 2)
Với x + 3 ≥ 0 hay x ≥ – 3, ta có |x + 3| = x + 3, khi đó y = 1 – (x + 3)(x – 2) hay y = – x2 – x + 7.
Với x + 3 < 0 hay x < – 3, ta có |x + 3| = –(x + 3), khi đó y = 1 + (x + 3)(x – 2) hay y = x2 + x – 5.
Do đó, ta có y = .
Hàm số y = – x2 – x + 7 là hàm số bậc hai có x = ,
y = .
Bảng biến thiên của hàm số y = 1 − |x + 3|(x – 2)
Dựa vào bảng biến thiên, phương trình có đúng 1 nghiệm khi và chỉ khi .
Câu 4
Lời giải
Đáp án đúng là: C
Gọi số ki-lô-mét đường dây điện từ vị trí A đến vị trí S là x (km) (x > 0).
Khi đó trên hình vẽ ta có: SA = x (km), AB = 4 (km), BC = 1 (km).
Ta thấy AB = SA + SB, suy ra SB = AB – SA = 4 – x (km). (Vì SB > 0 nên 4 – x > 0 hay x < 4)
Lại có tam giác SBC vuông tại B nên theo định lý Pytago ta có:
SC2 = BC2 + BS2 = 12 + (4 – x)2 = 1 + 16 – 8x + x2 = x2 – 8x + 17
Suy ra SC = (km)
Vì tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S là 4 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ A đến S là: 4x (triệu đồng).
Tiền công thiết kế mỗi ki-lô-mét đường dây từ S đến C là 6 triệu đồng nên số tiền để thiết kế toàn bộ đường dây từ S đến C là: (triệu đồng).
Tổng số tiền công thiết kế toàn bộ đường dây từ A đến S và từ S đến C là 25 triệu đồng nên ta có phương trình: 4x + = 25 (1)
Giải phương trình (1)
Ta có: (1) Û = 25 – 4x (Điều kiện: 25 – 4x > 0 Û x < )
36(x2 – 8x + 17) = (25 − 4x)2
36x2 – 288x + 612 = 625 – 200x + 16x2
20x2 – 88x – 13 = 0
Do đó số ki-lô-mét đường dây từ vị trí A đến S là 4,54 (km).
Số ki-lô-mét đường dây từ vị trí S đến C là: = = 1,14 (km).
Vậy tổng số ki-lô-mét đường dây đã thiết kế là 4,54 + 1,14 = 5,68 (km).
Lời giải
Đáp án đúng là: D
+) Khi m = 0, ta có:
mx2 – (2m – 1)x + m + 1 < 0
⇔ x + 1 < 0
⇔ x < –1
Do đó, m = 0 không thỏa mãn yêu cầu đề bài
+) Khi m ≠ 0, ta có:
Xét tam thức: f(x) = mx2 – (2m – 1)x + m + 1 có:
a = m,
∆ = [–(2m – 1)2] – 4.m.(m + 1) = 4m2 – 4m + 1 – 4m2 – 4m = –8m + 1
Để mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi mx2 – (2m – 1)x + m + 1 ≥ 0 với mọi số thực x
Vậy khi thì bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm.