Dạng 3. Sử dụng phối hợp đường trung bình của tam giác và đường trung bình của hình thang đê chứng minh có đáp án
26 người thi tuần này 4.6 2.3 K lượt thi 4 câu hỏi 45 phút
🔥 Đề thi HOT:
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 10 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
Đề kiểm tra Cuối kì 2 Toán 8 CTST có đáp án (Đề 1)
Dạng 1: Bài luyện tập 1 dạng 1: Tính có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

a) Ta có MN là đường trung bình của tam giác ABD
=> MN // AB
Tương tự, ta được MP//CD và MQ//AB, CD.
Như vậy, MN, MP, MQ cùng song song AB Þ ĐPCM.
Lời giải
Lời giải

a) Gọi P và Q lần lượt là giao điểm của AE, AF với CD.
Chứng minh tương tự 4.
Lời giải
b) Ta có:
Lại có:
c = CD = CQ + QD = BC + QD = b + QD (do tam giác BCQ cân) Þ QD = c - b.Trong hình thang ABQD có M là trung điểm của AD và MF//DQ nên chứng minh được F là trung điểm của BQ, từ đó chứng minh MF là đường trung bình của hình thang ABQD.
Vì MF là đường trung bình của hình thang ABQD.
Þ
Mặt khác, FN là đường trung bình của tam giác BCQ, tức là
466 Đánh giá
50%
40%
0%
0%
0%